Regulation of glycogen resynthesis in muscles of rats following exercise. 1978

R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy

Following a strenuous bout of exercise, glycogen repletion occurred most rapidly in the fast-twitch red type of muscle, least rapidly in fast-twitch white, and at an intermediate rate in slow-twitch red muscle. There was a linear correlation between glycogen synthase I activity and the rate of glycogen synthesis in the three types of muscle. This finding helps explain the differences between the rates of glycogen resynthesis in the three muscle types, and supports the view that glycogen synthase activity is the most important factor determining the rate of glycogen synthesis when substrate supply is adequate. There was an inverse correlation between muscle glycogen concentration and percent glycogen synthase I. Plasma insulin concentration was low and norepinephrine and glucagon concentrations were elevated in the postexercise period. The finding that rapid glycogen synthesis occurred despite a hormonal milieu conducive to glycogenolysis provides evidence that a low glycogen concentration is a potent stimulus to glycogen synthesis that overrides the effects of low insulin, and high norepinephrine and glucagon levels.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005260 Female Females
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006003 Glycogen
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
November 1984, The American journal of physiology,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
April 1991, Sports medicine (Auckland, N.Z.),
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
March 1993, Medicine and science in sports and exercise,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
February 1995, The Journal of physiology,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
January 1994, The American journal of physiology,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
May 1980, The American journal of physiology,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
February 2000, Journal of applied physiology (Bethesda, Md. : 1985),
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
October 1955, Ceskoslovenska fysiologie,
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
July 1990, Journal of applied physiology (Bethesda, Md. : 1985),
R K Conlee, and R C Hickson, and W W Winder, and J M Hagberg, and J O Holloszy
June 1998, International journal of sports medicine,
Copied contents to your clipboard!