Human cytochrome P450 3A (CYP3A) mediated midazolam metabolism: the effect of assay conditions and regioselective stimulation by alpha-naphthoflavone, terfenadine and testosterone. 1998

J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Centre, Indianapolis, IN 46285, USA.

The effect of ionic strength, assay constituents, alpha-naphthoflavone (aNF), terfenadine and testosterone on human CYP3A mediated midazolam (MDZ) 1'-hydroxylation (MDZ 1'-OH) and 4-hydroxylation (MDZ 4-OH) in vitro was examined. Increasing concentration of Tris-HCl (Tris) and sodium phosphate (PO4) buffers differentially affected MDZ 1'-OH and MDZ 4-OH formation rates and had a different effect on MDZ metabolism mediated by microsomes containing CYP3A4 versus CYP3A4 and CYP3A5. MDZ metabolism was not affected by PO4 buffer concentration when cumene hydroperoxide (CUOOH) was used as the source of reactive oxygen. Interestingly, the ammonium ion present in the solution of glucose 6-phosphate dehydrogenase was found to inhibit MDZ metabolism. The addition of MgCl2 up to 50 mM and CaCl2 (5-30 mM) had no affect or inhibited MDZ metabolism, respectively. Formation of MDZ 1'-OH by microsomes from adult and fetal liver and expressed CYP3A4 was regioselectively stimulated by aNF (10 microM). In human hepatocytes, aNF stimulated MDZ 1'-OH formation (up to 100%). Terfenadine (20 microM) regioselectively stimulated MDZ 1'-OH formation in Tris (1-200 mM) and PO4 (1-10 mM) buffers by up to 159%. Surprisingly, with expressed CYP3A4, terfenadine (20 microM) inhibited MDZ 1'-OH formation. Terfenadine (20 microM) had little effect on MDZ 1'-OH formation by fetal liver microsomes. Testosterone (10 and 100 microM) regioselectively stimulated (up to 269%) MDZ 4-OH formation by adult liver microsomes and expressed CYP3A4. Testosterone (100 microM) inhibited (> 40%) MDZ 1'-OH and MDZ 4-OH formation by fetal liver microsomes. With adult liver microsomes, aNF and terfenadine had little effect on the Km for MDZ 1'-OH formation. However, the Km for MDZ 4-OH formation was decreased (up to 94%) by 100 microM testosterone. In the presence of CUOOH, no stimulation of MDZ metabolism was observed by aNF, terfenadine or testosterone in adult liver microsomes. These studies indicate that because assay conditions can substantially alter the catalytic activity of CYP3A, caution should be exerted when extrapolating results between in vitro and in vivo, and when results from different laboratories are compared. Further, these results suggest that the stimulation of CYP3A4 may also occur in vivo and, consequently, may have clinical importance.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002122 Calcium Chloride A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning. Calcium Chloride Dihydrate,Calcium Chloride, Anhydrous
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic

Related Publications

J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
April 1994, Biochemical pharmacology,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
June 2001, Pharmacogenetics,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
January 2004, Drug metabolism and drug interactions,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
June 1999, Biochemical pharmacology,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
June 2004, Drug metabolism and disposition: the biological fate of chemicals,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
January 1995, Drug metabolism and disposition: the biological fate of chemicals,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
January 1993, The Journal of steroid biochemistry and molecular biology,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
April 2005, Drug metabolism and disposition: the biological fate of chemicals,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
May 2003, Biochimica et biophysica acta,
J Mäenpää, and S D Hall, and B J Ring, and S C Strom, and S A Wrighton
March 1994, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!