Expression of the paired-box genes Pax-1 and Pax-9 in limb skeleton development. 1999

E E LeClair, and L Bonfiglio, and R S Tuan
Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

Vertebrate Pax genes encode a family of transcription factors that play important roles in embryonic patterning and morphogenesis. Two closely related Pax genes, Pax-1 and Pax-9, are associated with early axial and limb skeleton development. To investigate the role of these genes in cartilage formation we have examined the expression profiles of Pax-1 and Pax-9 in developing chick limb mesenchyme in vivo and in vitro. Both transcripts are detected by reverse transcription polymerase chain reaction and Northern blotting throughout chick limb development, from the early bud stages (Hamburger-Hamilton 20-23) to fully patterned appendages (stage 30). Whole-mount in situ hybridization reveals complex, nonoverlapping expression domains of these two genes. Pax-1 transcripts first appear at the anterior proximal margin of the limb buds, while Pax-9 is expressed more distally at what will be the junction of the autopod and the zeugopod. In situ hybridization to serial sections of the girdles reveals that in the pectoral region Pax-1 is expressed proximally in condensed mesenchyme surrounding the junction of the developing scapula, humerus, and coracoid. In the pelvis, Pax-1 is expressed between the femur and the developing acetabulum and along the ventral edge of the ischium; this transcript was also found in the distal hindlimb along the posterior edge of the fibula. Pax-9 transcripts were not detected in the pectoral girdle at any stage, and only weakly in the pelvis along the ventral ischial margin. In the distal parts of both wings and legs, however, Pax-9 is strongly expressed between the anterior embryonic cartilages (e.g., distal radius or tibia) and the anterior ectodermal ridge. The expression of both genes was strongest in undifferentiated cells of precartilage condensations or at the margins of differentiated cartilages, and was absent from cartilage itself. In micromass cultures of chondrifying limb bud mesenchyme expression of Pax-1 and Pax-9 is maintained for up to 3 days in vitro, most strongly at the end of the culture period during chondrogenic differentiation. As seen in vivo, transcripts are found in loose mesenchyme cells at the outer margins of developing cartilage nodules, and are absent from differentiated chondrocytes at the nodule center. Taken together, these investigations extend previous studies of Pax-1 and Pax-9 expression in embryonic limb development while validating limb bud mesenchyme culture as an accessible experimental system for the study of Pax gene function and regulation. Our in vivo and in vitro observations are discussed with reference to 1) the relationship between somitic and limb expression of these two Pax genes, 2) what regulates this expression in different regions of the embryo, and 3) the putative cellular functions of Pax-1 and Pax-9 in embryonic skeletogenesis.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D016375 Antisense Elements (Genetics) Nucleic acids which hybridize to complementary sequences in other target nucleic acids causing the function of the latter to be affected. Antisense Probes,Anti-Sense Elements,Anti-Sense Probes,Anti Sense Elements,Anti Sense Probes,Elements, Anti-Sense,Probes, Anti-Sense,Probes, Antisense

Related Publications

E E LeClair, and L Bonfiglio, and R S Tuan
October 1991, Genomics,
E E LeClair, and L Bonfiglio, and R S Tuan
October 2006, Mutation research,
E E LeClair, and L Bonfiglio, and R S Tuan
May 1994, Development (Cambridge, England),
E E LeClair, and L Bonfiglio, and R S Tuan
December 1991, Development (Cambridge, England),
E E LeClair, and L Bonfiglio, and R S Tuan
August 1998, Biochemical Society transactions,
E E LeClair, and L Bonfiglio, and R S Tuan
April 1995, Nature genetics,
E E LeClair, and L Bonfiglio, and R S Tuan
January 2017, Current topics in developmental biology,
Copied contents to your clipboard!