Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins. 1998

A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
Department of Molecular Genetics, University of Illinois at Chicago, 60607, USA.

The Cdk inhibitor p21(WAF1/CIP1) is a negative regulator of the cell cycle, although its expression is induced by a number of mitogens that promote cell proliferation. We have found that E2F1 and E2F3, transcription factors that activate genes required for cell cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-box protein-1), a novel retinoblastoma protein-binding protein, can repress the p21 promoter and inhibit induction of p21 expression by E2F. Both E2Fs and HBP1 regulate p21 transcription through cis-acting elements located between nucleotides -119 to +16 of the p21 promoter and the DNA binding domains of each of these proteins are required for activity. Sequences between -119 and -60 basepairs containing four Sp1 consensus elements and two noncanonical E2F binding sites are of major importance for E2F activation, although E2F1 and E2F3 differ in the extent of their ability to activate expression when this segment is deleted. The opposing effects of E2Fs and HBP1 on p21 promoter activity suggest that interplay between these factors may determine the level of p21 transcription in vivo.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
February 2001, Oncogene,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
July 1997, Biochemical and biophysical research communications,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
April 2000, Biochemical and biophysical research communications,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
December 1996, The American journal of physiology,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
January 2002, Cell cycle (Georgetown, Tex.),
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
September 2000, The Journal of biological chemistry,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
November 2013, Nature neuroscience,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
September 2003, Oncogene,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
April 2000, Molecular and cellular biology,
A L Gartel, and E Goufman, and S G Tevosian, and H Shih, and A S Yee, and A L Tyner
March 2001, Biochemical and biophysical research communications,
Copied contents to your clipboard!