C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis. 1999

C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.

The effects of C-fiber depletion induced by neonatal capsaicin treatment on the functional properties of vibrissa-sensitive low-threshold mechanoreceptive (LTM) neurons in the rat trigeminal nucleus principalis were examined in adult rats. Neonatal rats were injected either with capsaicin or its vehicle within 48 h of birth. The depletion of unmyelinated afferents was confirmed by the significant decrease in plasma extravasation of Evan's blue dye induced in the hindlimb skin of capsaicin-treated rats by cutaneous application of mustard oil and by the significant decrease of unmyelinated fibers in both the sciatic and infraorbital nerves. The mechanoreceptive field (RF) and response properties of 31 vibrissa-sensitive neurons in capsaicin-treated rats were compared with those of 32 vibrissa-sensitive neurons in control (untreated or vehicle-treated) rats. The use of electronically controlled mechanical stimuli allowed quantitative analysis of response properties of vibrissa-sensitive neurons; these included the number of center- and surround-RF vibrissae within the RF (i.e., those vibrissae which when stimulated elicited >/=1 and <1 action potential per stimulus, respectively), the response magnitude and latency, and the selectivity of responses to stimulation of vibrissae in different directions with emphasis on combining both the response magnitude and direction of vibrissal deflection in a vector analysis. Neonatal capsaicin treatment was associated with significant increases in the total number of vibrissae, in the number of center-RF vibrissae per neuronal RF, and in the percentage of vibrissa-sensitive neurons that also responded to stimulation of other types of orofacial tissues. Compared with control rats, capsaicin-treated rats showed significant increases in the response magnitude to stimulation of surround-RF vibrissae as well as in response latency variability to stimulation of both center- and surround-RF vibrissae. C-fiber depletion also significantly altered the directional selectivity of responses to stimulation of vibrissae. For neurons with multiple center-RF vibrissae, the proportion of center-RF vibrissae with net vector responses oriented toward the same quadrant was significantly less in capsaicin-treated compared with control rats. These changes in the functional properties of principalis vibrissa-sensitive neurons associated with marked depletion of C-fiber afferents are consistent with similarly induced alterations in LTM neurons studied at other levels of the rodent somatosensory system, and indeed may contribute to alterations previously described in the somatosensory cortex of adult rodents. Furthermore, these results provide additional support to the view that C fibers may have an important role in shaping the functional properties of LTM neurons in central somatosensory pathways.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009149 Mustard Plant Any of several BRASSICA species that are commonly called mustard. Brassica juncea is brown or Chinese mustard, and Brassica nigra is black, brown, or red mustard. The plant is grown both for mustard seed from which oil is extracted or used as SPICES, and for its greens used as VEGETABLES or ANIMAL FEED. There is no relationship to MUSTARD COMPOUNDS. A species from a related genus SINAPIS ALBA is white mustard. Brassica juncea,Mustard,Brassica nigra,Mustard Plants,Mustards
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D005070 Evans Blue An azo dye used in blood volume and cardiac output measurement by the dye dilution method. It is very soluble, strongly bound to plasma albumin, and disappears very slowly. Azovan Blue,C.I. 23860,C.I. Direct Blue 53,Evan's Blue,Blue, Azovan,Blue, Evan's,Blue, Evans,Evan Blue

Related Publications

C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
March 2001, Journal of neurophysiology,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
January 2003, Journal of neurophysiology,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
November 1998, The Journal of comparative neurology,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
April 1998, Neuroscience,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
December 2001, Journal of neurophysiology,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
September 2014, Somatosensory & motor research,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
January 1996, Journal of neurophysiology,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
January 2015, Somatosensory & motor research,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
October 1988, Brain research,
C L Kwan, and J A Demaro, and J W Hu, and M F Jacquin, and B J Sessle
March 1992, Journal of neurophysiology,
Copied contents to your clipboard!