Transplacement mutagenesis: a novel in situ mutagenesis system using phage-plasmid recombination. 1999

M W Unger, and S Y Liu, and D E Rancourt
Southern Alberta Cancer Research Centre, Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

Site-specific mutagenesis provides the ability to alter DNA with precision so that the function of any given gene can be more fully understood. Several methods of in vitro mutagenesis are time-consuming and imprecise, requiring the subcloning and sequencing of products. Here we describe a rapid, high fidelity method of in situ mutagenesis in bacteriophage lambda using transplacement. Using this method, mutations are transferred from oligonucleotides to target phages using a plasmid interface. A small (50 bp) homology region bearing a centred point mutation is generated from oligonucleotides and subcloned into a transplacement plasmid bearing positive and negative phage selectable markers. Following a positive/negative selection cycle of integrative recombination and excision, the point mutation is transferred precisely from plasmid to phage in a subset ( approximately 25-50%) of recombinants. As the fidelity of both oligonucleotide synthesis and phage-plasmid recombination is great, this approach is extremely reliable. Using transplacement, point mutations can be accurately deposited within large phage clones and we demonstrate the utility of this technique in the construction of gene targeting vectors in bacteriophages.

UI MeSH Term Description Entries
D008268 Macular Degeneration Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms. Maculopathy,Maculopathy, Age-Related,Age-Related Macular Degeneration,Age-Related Maculopathies,Age-Related Maculopathy,Macular Degeneration, Age-Related,Macular Dystrophy,Maculopathies, Age-Related,Age Related Macular Degeneration,Age Related Maculopathies,Age Related Maculopathy,Age-Related Macular Degenerations,Degeneration, Macular,Dystrophy, Macular,Macular Degeneration, Age Related,Macular Degenerations,Macular Dystrophies,Maculopathies,Maculopathy, Age Related
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M W Unger, and S Y Liu, and D E Rancourt
January 2002, Methods in molecular biology (Clifton, N.J.),
M W Unger, and S Y Liu, and D E Rancourt
January 2008, Methods in molecular biology (Clifton, N.J.),
M W Unger, and S Y Liu, and D E Rancourt
May 1975, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M W Unger, and S Y Liu, and D E Rancourt
September 1984, Virology,
M W Unger, and S Y Liu, and D E Rancourt
January 1983, The EMBO journal,
M W Unger, and S Y Liu, and D E Rancourt
January 1988, Biotechnology (Reading, Mass.),
M W Unger, and S Y Liu, and D E Rancourt
November 2022, Applied microbiology and biotechnology,
M W Unger, and S Y Liu, and D E Rancourt
February 1998, Nucleic acids research,
M W Unger, and S Y Liu, and D E Rancourt
January 1997, FEMS microbiology letters,
M W Unger, and S Y Liu, and D E Rancourt
January 2003, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!