Estimation of cross-bridge stiffness from maximum thermodynamic efficiency. 1998

C J Barclay
Department of Physiology, Monash University, Clayton, Victoria, Australia. chris.barclay@med.monash.edu.au

In muscle, work is performed by myosin cross-bridges during interactions with actin filaments. The amount of work performed during each interaction can be related to the mechanical properties of the cross-bridge; work is the integral of the force produced with respect to the distance that the cross-bridge moves the actin filament, and force is determined by the stiffness of the attached cross-bridge. In this paper, cross-bridge stiffness in frog sartorius muscle was estimated from thermodynamic efficiency (work/free energy change) using a two-state cross-bridge model, assuming constant stiffness over the working range and tight-coupling between cross-bridge cycles and ATP use. This model accurately predicts mechanical efficiency (work/enthalpy output). A critical review of the literature indicates that a realistic value for maximum thermodynamic efficiency of frog sartorius is 0.45 under conditions commonly used in experiments on isolated muscle. Cross-bridge stiffness was estimated for a range of power stroke amplitudes. For realistic amplitudes (10-15 nm), estimated cross-bridge stiffness was between 1 and 2.2 pN nm-1. These values are similar to those estimated from quick-release experiments, taking into account compliance arising from structures other than cross-bridges, but are substantially higher than those from isolated protein studies. The effects on stiffness estimates of relaxing the tight-coupling requirement and of incorporating more force-producing cross-bridge states are also considered.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

C J Barclay
November 2005, Physical review letters,
C J Barclay
February 2012, Physical review. E, Statistical, nonlinear, and soft matter physics,
C J Barclay
July 2002, Journal of theoretical biology,
C J Barclay
June 2004, American journal of physiology. Cell physiology,
C J Barclay
June 2002, Biophysical journal,
C J Barclay
January 2005, Advances in experimental medicine and biology,
C J Barclay
January 2013, Physical review. E, Statistical, nonlinear, and soft matter physics,
C J Barclay
April 1992, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!