Cloning, expression, and enzymatic characterization of Pseudomonas aeruginosa topoisomerase IV. 1999

T Akasaka, and Y Onodera, and M Tanaka, and K Sato
New Product Research Laboratories I, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan. akasa94k@daiichipharm.co.jp

The topoisomerase IV subunit A gene, parC homolog, has been cloned and sequenced from Pseudomonas aeruginosa PAO1, with cDNA encoding the N-terminal region of Escherichia coli parC used as a probe. The homolog and its upstream gene were presumed to be parC and parE through sequence homology with the parC and parE genes of other organisms. The deduced amino acid sequence of ParC and ParE showed 33 and 32% identity with that of the P. aeruginosa DNA gyrase subunits, GyrA and GyrB, respectively, and 69 and 75% identity with that of E. coli ParC and ParE, respectively. The putative ParC and ParE proteins were overexpressed and separately purified by use of a fusion system with a maltose-binding protein, and their enzymatic properties were examined. The reconstituted enzyme had ATP-dependent decatenation activity, which is the main catalytic activity of bacterial topoisomerase IV, and relaxing activities but had no supercoiling activity. So, the cloned genes were identified as P. aeruginosa topoisomerase IV genes. The inhibitory effects of quinolones on the activities of topoisomerase IV and DNA gyrase were compared. The 50% inhibitory concentrations of quinolones for the decatenation activity of topoisomerase IV were from five to eight times higher than those for the supercoiling activities of P. aeruginosa DNA gyrase. These results confirmed that topoisomerase IV is less sensitive to fluoroquinolones than is DNA gyrase and may be a secondary target of new quinolones in wild-type P. aeruginosa.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T Akasaka, and Y Onodera, and M Tanaka, and K Sato
February 2012, Journal of medical microbiology,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
September 2009, Biotechnology letters,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
February 2009, Protein expression and purification,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
April 2021, Current microbiology,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
June 1987, Journal of bacteriology,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
January 1999, Bioscience, biotechnology, and biochemistry,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
August 1984, Journal of bacteriology,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
January 1989, European journal of biochemistry,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
March 2004, Molecular genetics and genomics : MGG,
T Akasaka, and Y Onodera, and M Tanaka, and K Sato
October 2016, Protein expression and purification,
Copied contents to your clipboard!