Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. 1999

M T Cottrell, and S C Cary
College of Marine Studies, University of Delaware, Lewes, Delaware 19958, USA.

A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010140 Pacific Ocean Body of water between Asia and South America, extending from the Arctic circle to the Equator and from the Equator to the Antarctic.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011077 Polychaeta A class of marine annelids including sandworms, tube worms, clamworms, and fire worms. It includes also the genus Myxicola infundibulum. Myxicola,Myxicolas,Polychaetas
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M T Cottrell, and S C Cary
January 2001, Applied and environmental microbiology,
Copied contents to your clipboard!