Adenosine inhibits L-type Ca2+ current and catecholamine release in the rabbit carotid body chemoreceptor cells. 1999

A Rocher, and C Gonzalez, and L Almaraz
Department of Biochemistry and Molecular Biology and Physiology, CSIC, School of Medicine, University of Valladolid, Spain.

In an in vitro preparation of the intact carotid body (CB) of the rabbit, adenosine (100 microM) inhibited hypoxia-induced catecholamine release by 25%. The specific A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 1 microM) prevented the inhibition and increased the response to hypoxia further. In isolated chemoreceptor cells from the same species, adenosine inhibited voltage-dependent Ca2+ currents by 29% at 1 microM (concentration producing half-maximal inhibition, IC50 = 50 nM). This inhibition was mimicked by R(-)N6-(2-phenylisopropyl)-adenosine and 2-chloroadenosine (1 microM), two purinergic agonists poorly active at the intracellular ('P') site, and persisted in the presence of dipyridamole (a blocker of adenosine uptake; 1 microM) and was fully inhibited by 8-phenyltheophylline (10 microM). The A1 antagonists DPCPX (10 microM) and 8-cyclopentyl-1,3-dimethylxantine (0.1 microM) inhibited the effect of adenosine by 93% (IC50 = 0.14 microM) and 59%, respectively. The inhibition of the Ca2+ current (I(Ca)) was reduced by nisoldipine (an L-type Ca2+ channel antagonist) by nearly 50%, and was unaltered by omega-conotoxin GVIA, a blocker of N-type Ca2+ channels. Adenosine did not affect the voltage-dependent Na+ current (I(Na)) or K+ current (I(K)). We conclude that adenosine A1 receptors are located in chemoreceptor cells and mediate the inhibition of L-type Ca2+ channels and thereby the release of catecholamines produced by hypoxia. The data also indicate that endogenous adenosine acts as a physiological negative modulator of the chemoreceptor cell function. The previously reported excitatory action of adenosine on the activity of the sensory nerve of the CB is discussed in terms of a balance between the inhibition mediated by A1 receptors and the excitation mediated by A2 receptors.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

A Rocher, and C Gonzalez, and L Almaraz
January 1996, Advances in experimental medicine and biology,
A Rocher, and C Gonzalez, and L Almaraz
December 1995, The Journal of physiology,
A Rocher, and C Gonzalez, and L Almaraz
April 1999, Journal of neurophysiology,
A Rocher, and C Gonzalez, and L Almaraz
January 1993, The Journal of physiology,
A Rocher, and C Gonzalez, and L Almaraz
February 2000, Pflugers Archiv : European journal of physiology,
A Rocher, and C Gonzalez, and L Almaraz
July 1988, Science (New York, N.Y.),
A Rocher, and C Gonzalez, and L Almaraz
June 1991, Sheng li xue bao : [Acta physiologica Sinica],
A Rocher, and C Gonzalez, and L Almaraz
April 2005, Biochemical and biophysical research communications,
A Rocher, and C Gonzalez, and L Almaraz
August 2002, Journal of neurophysiology,
Copied contents to your clipboard!