Foldability of barnase mutants obtained by permutation of modules or secondary structure units. 1999

T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
Department of Chemistry and Biotechnology, Yokohama National University, Tokiwadai Hodogaya-ku, Yokohama, 240, Japan.

Modules, defined as stable, compact structure units in a globular protein, are good candidates for the construction of novel foldable proteins by permutation. Here we decomposed barnase into six modules (M1-M6) and constructed 23 barnase mutants containing permutations of the internal four (M2-M5) out of six modules. Globular proteins can also be subdivided into secondary structure units based on the extended structures that control the mutual relationships of the modules. We also decomposed barnase into six secondary structure units (S1-S6) and constructed 21 barnase mutants containing permutations of the internal four (S2-S5) out of six secondary structure units. Foldability of these two types of mutants was assessed by means of circular dichroism, fluorescence, and 1H-NMR measurements. A total of 15 of 23 module mutants and 15 of 21 secondary structure unit mutants formed definite secondary structures, such as alpha-helix and beta-sheet, at 20 microM owing to intermolecular interactions, but most of them converted to random coil structures at a lower concentration (1 microM). Of the 44 mutants, only two, M3245 and S2543, gave distinct near-UV CD spectra. S2543 especially showed definite signal dispersion in the amide and methyl regions of the 1H-NMR spectrum, though M3245 did not. Furthermore, urea-induced unfolding of S2543 monitored by far-UV CD and fluorescence measurements showed a distinct cooperative transition. These results strongly suggest that S2543 takes partially folded conformations in aqueous solution. Our results also suggest that building blocks such as secondary structure units capable of taking different stable conformations by adapting themselves to the surrounding environment, rather than building blocks such as modules having a specified stable conformation, are required for the formation of foldable proteins. Therefore, the use of secondary structure units for the construction of novel globular proteins is likely to be an effective approach.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
June 2004, Biochemistry,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
June 1999, FEBS letters,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
June 2001, Journal of biochemistry,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
January 2001, Seikagaku. The Journal of Japanese Biochemical Society,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
March 1997, FEBS letters,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
October 1995, Journal of molecular biology,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
August 1993, Proteins,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
June 2020, Journal of molecular graphics & modelling,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
August 1993, Proteins,
T Tsuji, and K Yoshida, and A Satoh, and T Kohno, and K Kobayashi, and H Yanagawa
November 1993, The EMBO journal,
Copied contents to your clipboard!