Insulin-like growth factors in human breast cancer. 1998

M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA. ellismj@gunet.georgetown.edu

IGF1 and IGF2 are circulating peptide hormones and locally-acting growth factors with both paracrine and autocrine functions. IGF1 and IGF2 signal through a common tyrosine kinase receptor, the insulin-like growth factor 1 receptor (IGF1R), and have mitogenic, cell survival, and insulin-like actions that are essential for embryogenesis, post-natal growth physiology, and breast development. The activities of IGF1 and 2 are tightly-regulated by a network of binding proteins and targeted degradation mechanisms. This complex regulatory system is disrupted in breast cancer, leading to excess IGF1R signaling. Evidence for this statement includes: a) breast cancers are infiltrated with IGF2 expressing stromal cells; b) mannose 6-phosphate/IGF2 receptor (M6P/IGF2R) is mutated in breast cancer, leading to loss of IGF2 degradation; c) IGF1R is overexpressed by malignant breast epithelial cells, and in some cases IGF1R is amplified; and d) complex changes in IGF binding protein expression occur during breast cancer progression which most likely also affect IGF1 and 2 signaling. The clinical importance of these epigenetic and genetic changes has recently been stressed by the finding that IGF1R signaling alters the apoptotic response of breast cancer cells to genotoxic stress and, in addition, IGF1R activation sensitizes cells to estrogen by inducing phosphorylation of the estrogen receptor. As a consequence of these findings, we propose that IGF analysis of breast cancer samples should shift from prognostic studies to an evaluation of IGF ligands, receptors, and binding proteins as resistance/sensitivity markers for radiation, chemotherapy, and endocrine therapy.

UI MeSH Term Description Entries
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017526 Receptor, IGF Type 1 A protein-tyrosine kinase receptor that is closely related in structure to the INSULIN RECEPTOR. Although commonly referred to as the IGF-I receptor, it binds both IGF-I and IGF-II with high affinity. It is comprised of a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The beta subunit contains an intrinsic tyrosine kinase domain. IGF Type 1 Receptor,IGF-I Receptor,Receptor, IGF-I,Receptor, Insulin-Like Growth Factor I,Receptor, Insulin-Like Growth Factor Type 1,IGF-1 Receptor,Insulin-Like-Growth Factor I Receptor,Receptor, IGF Type 1 alpha Subunit,Receptor, IGF Type 1 beta Subunit,Receptors, IGF-1,Receptors, Insulin-Like-Growth Factor I,IGF 1 Receptor,IGF I Receptor,IGF-1 Receptors,Insulin Like Growth Factor I Receptor,Receptor, IGF I,Receptor, IGF-1,Receptors, IGF 1
D017527 Receptor, IGF Type 2 A receptor that is specific for IGF-II and mannose-6-phosphate. The receptor is a 250-kDa single chain polypeptide which is unrelated in structure to the type 1 IGF receptor (RECEPTOR, IGF TYPE 1) and does not have a tyrosine kinase domain. IGF Type 2 Receptor,IGF-II Receptor,Receptor, IGF-II,Receptor, Insulin-Like Growth Factor II,Receptor, Insulin-Like Growth Factor Type 2,Receptor, Mannose-6-Phosphate,IGF-2 Receptor,Insulin-Like-Growth-Factor II Receptor,Mannose-6-Phosphate Receptor,Receptors, IGF-2,Receptors, Insulin-Like Growth Factor II,IGF 2 Receptor,IGF II Receptor,IGF-2 Receptors,Insulin Like Growth Factor II Receptor,Mannose 6 Phosphate Receptor,Receptor, IGF II,Receptor, IGF-2,Receptor, Insulin Like Growth Factor II,Receptor, Insulin Like Growth Factor Type 2,Receptor, Insulin-Like-Growth-Factor II,Receptor, Mannose 6 Phosphate,Receptors, IGF 2,Receptors, Insulin Like Growth Factor II
D018969 Insulin-Like Growth Factor Binding Proteins A family of soluble proteins that bind insulin-like growth factors and modulate their biological actions at the cellular level. (Int J Gynaecol Obstet 1992;39(1):3-9) IGF Binding Protein,IGF-Binding Protein,IGF-Binding Proteins,IGFBP,Insulin-Like Growth Factor Binding Protein,Somatomedin-Binding Protein,Somatomedin-Binding Proteins,Binding Protein, IGF,IGF Binding Proteins,Insulin Like Growth Factor Binding Protein,Protein, IGF Binding,Protein, IGF-Binding,Protein, Somatomedin-Binding,Somatomedin Binding Protein,Somatomedin Binding Proteins

Related Publications

M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
May 1991, Breast cancer research and treatment,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
January 1996, Acta oncologica (Stockholm, Sweden),
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
January 1995, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
June 2003, Onkologie,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
January 2007, Advances in experimental medicine and biology,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
December 1990, The Journal of steroid biochemistry and molecular biology,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
January 1992, Breast cancer research and treatment,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
February 1998, Breast cancer research and treatment,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
August 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,
M J Ellis, and S Jenkins, and J Hanfelt, and M E Redington, and M Taylor, and R Leek, and K Siddle, and A Harris
April 2011, Breast cancer research and treatment,
Copied contents to your clipboard!