Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. 1999

K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.

1. The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques. 2. RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found. 3. Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and beta-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations. 4. Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+. 5. The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes. 6. Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
January 2015, Human molecular genetics,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
July 1999, Pflugers Archiv : European journal of physiology,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
May 1997, Proceedings of the National Academy of Sciences of the United States of America,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
August 1996, Biophysical journal,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
June 1995, Current opinion in neurobiology,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
August 1996, The Journal of physiology,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
May 2005, The Journal of general physiology,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
February 2015, American journal of physiology. Cell physiology,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
November 2004, BMC genomics,
K K Bradley, and J H Jaggar, and A D Bonev, and T J Heppner, and E R Flynn, and M T Nelson, and B Horowitz
March 2002, American journal of respiratory cell and molecular biology,
Copied contents to your clipboard!