Characterization of cytochrome P450 expression in human oesophageal mucosa. 1999

M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
Unit of Environmental Carcinogenesis, International Agency for Research on Cancer, Lyon, France.

The expression of cytochrome (CYP) P450 enzymes in human oesophageal mucosa was investigated in a total of 25 histologically non-neoplastic surgical tissue specimens by using specific antibodies in immunoblots and by RT-PCR mRNA analysis. The presence of CYP1A, 2E1, 3A and 4A enzymes was demonstrated by both techniques; CYP2A reactive protein was also detected by immunoblot. The presence of CYP4B1 mRNA was established but no specific antibody was available for detection of the corresponding protein by immunoblot. CYP2B6/7 mRNA was not detected in any sample. The mRNA transcripts for CYP1A1, 2E1, 4A11 and 4B1 were consistently detected in the majority of samples (>84%), whereas CYP1A2 mRNA was only detected in 11 of 19 specimens examined. An RT-PCR method to differentiate CYP3A4 and 3A5 mRNA was developed. This demonstrated CYP3A5 mRNA expression in all samples tested, whereas CYP3A4 mRNA was not detectable, suggesting that CYP3A5 is the major CYP3A protein in human oesophagus. There were significant interindividual variations in the amount of proteins, ranging from 8-fold for CYP4A to 43-fold for CYP2E1. For each patient, data on exposure to risk factors for oesophageal cancer were available, including tobacco smoke, alcohol, gastro-oesophageal reflux and hot beverage consumption. None of these risk factors or other patient characteristics (age, sex, tumour location and tumour stage) were correlated with the protein level of the individual CYP enzymes as determined by quantitation of immunoblot staining. However, the small series of samples precludes any strong conclusion concerning the lack of such correlations. There were no differences between squamous cell carcinomas and adenocarcinomas in either the qualitative or quantitative expression of the CYP enzymes. These data demonstrate that a range of CYP enzymes are expressed in human oesophageal mucosa and indicate that this tissue has the capacity to activate chemical carcinogens to reactive DNA binding metabolites.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
May 1994, Gut,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
March 2001, Carcinogenesis,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
March 2014, Toxicological research,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
January 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
April 2004, Chemico-biological interactions,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
December 2001, Archives of biochemistry and biophysics,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
October 2005, Drug metabolism and disposition: the biological fate of chemicals,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
November 1989, Cancer,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
April 1997, Protein expression and purification,
M Lechevrel, and A G Casson, and C R Wolf, and L J Hardie, and M B Flinterman, and R Montesano, and C P Wild
December 2005, Reproductive biology and endocrinology : RB&E,
Copied contents to your clipboard!