| D009119 |
Muscle Contraction |
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. |
Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions |
|
| D004558 |
Electric Stimulation |
Use of electric potential or currents to elicit biological responses. |
Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D017208 |
Rats, Wistar |
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. |
Wistar Rat,Rat, Wistar,Wistar Rats |
|
| D051381 |
Rats |
The common name for the genus Rattus. |
Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus |
|
| D018482 |
Muscle, Skeletal |
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. |
Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles |
|
| D018656 |
Muscle Fibers, Fast-Twitch |
Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. |
Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers |
|
| D018657 |
Muscle Fibers, Slow-Twitch |
Skeletal muscle fibers characterized by their expression of the Type I MYOSIN HEAVY CHAIN isoforms which have low ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. |
Muscle Fibers, Red,Muscle Fibers, Type I,Fiber, Red Muscle,Fiber, Slow-Twitch Muscle,Fibers, Red Muscle,Fibers, Slow-Twitch Muscle,Muscle Fiber, Red,Muscle Fiber, Slow-Twitch,Muscle Fibers, Slow Twitch,Red Muscle Fiber,Red Muscle Fibers,Slow-Twitch Muscle Fiber,Slow-Twitch Muscle Fibers |
|
| D018763 |
Muscle Fatigue |
A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle. |
Fatigue, Muscle,Muscular Fatigue,Fatigue, Muscular |
|