Homocysteine increases nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells. 1999

U Ikeda, and M Ikeda, and S Minota, and K Shimada
Department of Cardiology, Jichi Medical School, Minamikawachi, Tochigi,Japan. uikeda@jichi.ac.jp

BACKGROUND Elevated plasma homocysteine levels have been reported to be an independent risk factor for vascular disease. However, there have been no reports concerning the effects of homocysteine on the production of nitric oxide (NO), another modulator of vascular function and proliferation, by the vascular smooth muscle. RESULTS We investigated the effects of homocysteine on NO synthesis by measuring the production of nitrite, a stable metabolite of NO, in cultured rat vascular smooth muscle cells (VSMCs). Incubation of cultures with interleukin (IL)-1beta 10 ng/mL for 24 hours caused a significant increase in nitrite generation. The IL-1beta-induced nitrite production by VSMCs was significantly increased by homocysteine in a dose-dependent manner. This effect of homocysteine was significantly inhibited in the presence of NG-monomethyl-L-arginine or actinomycin D. The homocysteine-induced nitrite production was accompanied by increased inducible NO synthase mRNA and protein accumulation. Cysteine, glutathione, or hydrogen peroxide also increased nitrite accumulation in IL-1beta-stimulated VSMCs. Coincubation with the radical scavenger catalase or superoxide dismutase markedly reduced homocysteine-induced nitrite accumulation. CONCLUSIONS Homocysteine enhances NO synthesis in IL-1beta-stimulated VSMCs, and oxidative products are involved in the effect of homocysteine.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing

Related Publications

U Ikeda, and M Ikeda, and S Minota, and K Shimada
October 1999, Cardiovascular research,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
November 2001, Chinese medical journal,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
April 1994, The Journal of biological chemistry,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
June 2002, Cardiovascular research,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
August 1994, Biochimica et biophysica acta,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
April 1999, Hypertension (Dallas, Tex. : 1979),
U Ikeda, and M Ikeda, and S Minota, and K Shimada
January 1998, Progress in clinical and biological research,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
January 2000, Annals of the New York Academy of Sciences,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
October 2011, Cardiovascular research,
U Ikeda, and M Ikeda, and S Minota, and K Shimada
August 2001, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!