Effect of acidification on the location of H+-ATPase in cultured inner medullary collecting duct cells. 1999

E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
Renal Section, Boston University Medical Center and Departments of Medicine, Physiology, and Pathology, Boston University School of Medicine, Boston, 02118-2908, Massachusetts, USA.

In previous studies, our laboratory has utilized a cell line derived from the rat inner medullary collecting duct (IMCD) as a model system for mammalian renal epithelial cell acid secretion. We have provided evidence, from a physiological perspective, that acute cellular acidification stimulates apical exocytosis and elicits a rapid increase in proton secretion that is mediated by an H+-ATPase. The purpose of these experiments was to examine the effect of acute cellular acidification on the distribution of the vacuolar H+-ATPase in IMCD cells in vitro. We utilized the 31-kDa subunit of the H+-ATPase as a marker of the complete enzyme. The distribution of this subunit of the H+-ATPase was evaluated by immunohistochemical techniques (confocal and electron microscopy), and we found that there is a redistribution of these pumps from vesicles to the apical membrane. Immunoblot evaluation of isolated apical membrane revealed a 237 +/- 34% (P < 0.05, n = 9) increase in the 31-kDa subunit present in the membrane fraction 20 min after the induction of cellular acidification. Thus our results demonstrate the presence of this pump subunit in the IMCD cell line in vitro and that cell acidification regulates the shuttling of cytosolic vesicles containing the 31-kDa subunit into the apical membrane.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000143 Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed) Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
May 1993, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
April 2001, American journal of physiology. Cell physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
October 1997, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
September 1989, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
December 1988, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
August 1988, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
November 1993, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
November 1991, American journal of kidney diseases : the official journal of the National Kidney Foundation,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
February 1997, The American journal of physiology,
E A Alexander, and D Brown, and T Shih, and M McKee, and J H Schwartz
November 2004, American journal of physiology. Cell physiology,
Copied contents to your clipboard!