DNA topoisomerase IIalpha and -beta expression in human ovarian cancer. 1999

S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
Division of Medical Oncology, University Hospital Groningen, The Netherlands.

To study DNA topoisomerase IIalpha (Topo-IIalpha) and -beta expression and regulation in human ovarian cancer, 15 ovarian tumour samples were investigated. To compare different levels of expression, the samples were screened for topo IIalpha and -beta mRNA with Northern blotting and a quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay for Topo-IIalpha mRNA. Additionally, protein levels were determined with Western blotting and topoisomerase II activity levels with the decatenation assay. The results obtained were compared with each other and with the tumour volume index of the samples. In tumours with a tumour volume index > or = 50%, the mRNA levels (as determined by Northern blotting) and protein levels for each isozyme were in accordance. Additionally, correlations were found between Topo-IIalpha RT-PCR data and Topo-IIalpha Northern blot results, and between Topo-IIalpha RT-PCR data and Topo-IIalpha protein levels. Interestingly, Topo-IIbeta protein levels correlated better with Topo-II activity than Topo-IIalpha protein levels. In eight ovarian cystadenoma samples, no Topo-IIalpha protein could be found. In only three out of eight of these cystadenomas, Topo-IIbeta protein could be detected. These findings suggest that Topo-IIalpha and Topo-IIbeta protein levels are up-regulated in ovarian cancer and may indicate that Topo-IIbeta is an interesting target for chemotherapy in ovarian tumours.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009367 Neoplasm Staging Methods which attempt to express in replicable terms the extent of the neoplasm in the patient. Cancer Staging,Staging, Neoplasm,Tumor Staging,TNM Classification,TNM Staging,TNM Staging System,Classification, TNM,Classifications, TNM,Staging System, TNM,Staging Systems, TNM,Staging, Cancer,Staging, TNM,Staging, Tumor,System, TNM Staging,Systems, TNM Staging,TNM Classifications,TNM Staging Systems
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
January 2002, Anticancer research,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
January 2002, Anticancer research,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
April 2000, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
January 2000, Brain tumor pathology,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
November 2000, Leukemia,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
August 2003, British journal of cancer,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
January 2000, Cell biochemistry and biophysics,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
January 2000, Brain tumor pathology,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
September 1999, Journal of neurosurgery,
S Withoff, and A G van der Zee, and S de Jong, and H Hollema, and E F Smit, and N H Mulder, and E G de Vries
November 2003, FEBS letters,
Copied contents to your clipboard!