Ethylnitrosourea-induced development of malignant schwannomas in the rat: two distinct loci on chromosome of 10 involved in tumor susceptibility and oncogenesis. 1999

A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
Institute of Cell Biology (Cancer Research), University of Essen Medical School and West German Cancer Center Essen.

Inbred rodent strains with differing sensitivity to experimental tumor induction provide model systems for the detection of genes that either are responsible for cancer predisposition or modify the process of carcinogenesis. Rats of the inbred BD strains differ in their susceptibility to the induction of neural tumors by N-ethyl-N-nitrosourea (EtNU). Newborn BDIX rats that are exposed to EtNU (80 microg/g body weight; injected s.c.) develop malignant schwannomas predominantly of the trigeminal nerves with an incidence >85%, whereas BDIV rats are entirely resistant. A T:A-->A:T transversion mutation at nucleotide 2012 of the neu (erbB-2) gene on chromosome 10, presumably the initial event in EtNU-induced schwannoma development, is later followed by loss of the wild-type neu allele. Genetic crosses between BDIX and BDIV rats served: (a) to investigate the inheritance of susceptibility; (b) to obtain animals informative for the mapping of losses of heterozygosity (LOH) in tumors with polymorphic simple sequence length polymorphisms (SSLPs); and (c) to localize genes associated with schwannoma susceptibility by linkage analysis with SSLPs. Schwannoma development was strongly suppressed in F1 animals (20% incidence). All of the F1 schwannomas displayed LOH on chromosome 10, with a consensus region on the telomeric tip encompassing D10Rat3, D10Mgh16 and D10Rat2 but excluding neu. A strong bias toward losing the BDIV alleles suggests the involvement of a BDIV-specific tumor suppressor gene(s). Targeted linkage analysis with chromosome 10 SSLPs in F2 intercross and backcross animals localized schwannoma susceptibility to a region around D10Wox23, 30 cM centromeric to the tip. Ninety-four % of F1 tumors exhibited additional LOH at this region. Two distinct loci on chromosome 10 may thus be connected with susceptibility to the induction and development of schwannomas in rats exposed to EtNU.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008297 Male Males
D009442 Neurilemmoma A neoplasm that arises from SCHWANN CELLS of the cranial, peripheral, and autonomic nerves. Clinically, these tumors may present as a cranial neuropathy, abdominal or soft tissue mass, intracranial lesion, or with spinal cord compression. Histologically, these tumors are encapsulated, highly vascular, and composed of a homogenous pattern of biphasic fusiform-shaped cells that may have a palisaded appearance. (From DeVita Jr et al., Cancer: Principles and Practice of Oncology, 5th ed, pp964-5) Neurinoma,Schwannoma,Schwannomatosis, Plexiform,Neurilemoma,Neurilemmomas,Neurilemomas,Neurinomas,Plexiform Schwannomatoses,Plexiform Schwannomatosis,Schwannomas
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D005038 Ethylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosoethylurea,N-Ethyl-N-nitrosourea,N Ethyl N nitrosourea
D005260 Female Females

Related Publications

A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
April 1995, Genes, chromosomes & cancer,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
February 1984, Cancer research,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
October 1973, Acta neuropathologica,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
October 1998, Oncogene,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
April 1991, Blood,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
December 1977, Journal of the National Cancer Institute,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
June 2002, Carcinogenesis,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
February 2001, Cancer research,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
September 1977, Acta neuropathologica,
A Kindler-Röhrborn, and B U Kölsch, and C Fischer, and S Held, and M F Rajewsky
October 2012, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!