Purification and properties of gammagamma-enolase from pig brain. 1999

S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, 40475, USA.

Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as alphaalpha-(pI = 6.5), alphagamma- (pI = 5.6), and gammagamma-enolase (pI = 5.2). The pI of purified gammagamma-enolase was also 5.2. The gammagamma-enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55 degrees C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%-80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, gammagamma-enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The Km values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to Km values of other vertebrate enolases. The amino acid composition of pig gammagamma-enolase, as determined by amino acid analysis, shows strong similarity to the compositions of gammagamma-enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig gammagamma-enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig gammagamma-enolase and the other gammagamma-enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P2(1). An Rsymm <5% was obtained for data between 50 and 3.65 A, but was a disappointing 30% for data between 3.65 and 3.10 A, indicating crystal disorder.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
August 1973, Archives of biochemistry and biophysics,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
July 1965, Journal of neurochemistry,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
August 1975, Biochimica et biophysica acta,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
January 1974, Annals of the New York Academy of Sciences,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
January 1990, The International journal of biochemistry,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
June 1991, The Biochemical journal,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
September 1978, Biochimica et biophysica acta,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
October 1980, The Biochemical journal,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
September 1985, The Journal of biological chemistry,
S W Gorsich, and V Barrows, and J Halbert, and W W Farrar
June 1980, Journal of biochemistry,
Copied contents to your clipboard!