Kinetics and equilibrium studies of Tet repressor-operator interaction. 1999

S Kedracka-Krok, and Z Wasylewski
Physical Biochemistry Department, Institute of Molecular Biology, Jagiellonian University, Kraków, Poland.

Binding of a Tet repressor mutant containing a single Trp43 residue in the tet operator recognition alpha-helix leads to the quenching of the protein fluorescence down to about 23% in the case of the tet O1 operator and to 40% in the case of the tet O2 operator. We have used fluorescence detection to describe the binding equilibrium and kinetics of the Tet repressor interaction with the 20-bp DNA operators tet O1 and tet O2. Stopped-flow measurements in an excess of the tet operators performed in 5 mM NaCl or 150 mM NaCl indicate that the reaction can be described by at least three exponentials characterized by different relaxation times. The mechanism of interaction for both operators as well as for two salt concentrations used can be described as TetR + Operator <==> Complex 1 <==> Complex 2 <==> Complex 3. Only the much faster process can be described as a second-order reaction characterized by a bimolecular rate constant equal to 2.8X10(6) M(-1) sec(-1) for both operators. The medium and slow processes may be described by relaxational times ranging from 50 msec to seconds. The results of the binding equilibrium measurements extrapolated to 1 M NaCl concentration, which reflects the specific nonionic interaction between TetR and tet operators, indicate Kas equal to 3.2x10(4) and 4.0x10(5) M(-1) for tet O1 and tet O2, respectively. The number of monovalent ions replaced upon binding can be calculated as about 5 and 3 for tet O1 and tet O2, respectively. The binding of Tet repressor to the operators leads to changes in the circular dichroism spectra of the DNA which could indicate transitions of B-DNA into A-like DNA structure.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

S Kedracka-Krok, and Z Wasylewski
February 1970, Journal of molecular biology,
S Kedracka-Krok, and Z Wasylewski
August 1988, Journal of molecular biology,
S Kedracka-Krok, and Z Wasylewski
February 1999, Journal of protein chemistry,
S Kedracka-Krok, and Z Wasylewski
October 1982, Nucleic acids research,
S Kedracka-Krok, and Z Wasylewski
May 1986, Nucleic acids research,
S Kedracka-Krok, and Z Wasylewski
August 1989, Nucleic acids research,
S Kedracka-Krok, and Z Wasylewski
June 1982, The Journal of biological chemistry,
S Kedracka-Krok, and Z Wasylewski
February 2013, The journal of physical chemistry. B,
S Kedracka-Krok, and Z Wasylewski
February 1998, Cellular and molecular biology (Noisy-le-Grand, France),
Copied contents to your clipboard!