Inhibition of sensory neuron apoptosis and prevention of loss by NT-3 administration following axotomy. 1999

M J Groves, and S F An, and B Giometto, and F Scaravilli
Department of Neuropathology, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, United Kingdom.

Following permanent transection of their peripheral axons, a proportion of adult rat dorsal root ganglion neurons undergo programmed cell death (apoptosis) over a period of months. The underlying causes of this neuron loss are unclear, but may involve the interruption of the supply of target-derived neurotrophic factors, the replacement of which could prevent this loss from occurring. To investigate whether the administration of neurotrophic factors can prevent the dorsal root ganglion neuron death in adults, a 1 mg/ml solution of ciliary neurotrophic factor or of NT-3 was applied via a silicon reservoir to the proximal stump after unilateral sciatic transection at mid-thigh level. The incidence of apoptotic neurons and neuronal loss in the L4 and L5 ganglia ipsilateral to sciatic nerve transection when compared with the contralateral ganglia was then measured 1 month later. This was assessed by examining serial sections of ganglia for neurons undergoing apoptosis and expressing the total counted as a percentage of the total number of neurons estimated using a stereological neuron counting technique. Our results show that NT-3 administration significantly reduced the incidence of apoptotic neurons and prevented neuron loss, while CNTF had no effect on either parameter.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

M J Groves, and S F An, and B Giometto, and F Scaravilli
July 1994, Neuroreport,
M J Groves, and S F An, and B Giometto, and F Scaravilli
July 2011, Histochemistry and cell biology,
M J Groves, and S F An, and B Giometto, and F Scaravilli
February 2004, Neurochemical research,
M J Groves, and S F An, and B Giometto, and F Scaravilli
February 2009, Brain research,
M J Groves, and S F An, and B Giometto, and F Scaravilli
September 2001, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
M J Groves, and S F An, and B Giometto, and F Scaravilli
September 1997, Journal of neurocytology,
M J Groves, and S F An, and B Giometto, and F Scaravilli
March 1996, Neuroreport,
M J Groves, and S F An, and B Giometto, and F Scaravilli
March 1985, Journal of neurobiology,
M J Groves, and S F An, and B Giometto, and F Scaravilli
August 1998, Journal of anatomy,
M J Groves, and S F An, and B Giometto, and F Scaravilli
July 1996, The Journal of cell biology,
Copied contents to your clipboard!