Trypanosoma brucei: cis-acting sequences involved in the developmental regulation of PARP expression. 1999

K Wilson, and L Uyetake, and J Boothroyd
Department of Microbiology and Immunology, Stanford University, Stanford, California, 94305, USA.

The procyclic acidic repetitive protein (PARP or procyclin) of the parasitic protozoan Trypanosoma brucei is a developmentally regulated protein that shows extreme differences in its level of expression in different stages of the parasite's life cycle. Specifically, it is the major surface protein in the procyclic (insect) stage and, although the PARP gene is being actively transcribed in the mammalian bloodstream stage, there is no detectable PARP mRNA or protein in these cells. The 3'-untranslated region (UTR) of PARP, as well as other trypanosome genes, has the ability to confer the appropriate developmental regulation pattern onto chimeric reporter genes. To understand the mechanism of posttranscriptional regulation, selective replacement mutagenesis of the PARP mRNA 3'UTR was done to identify the cis-acting sequences involved in the down-regulation of this mRNA in bloodstream-form T. brucei. Transient transformation of constructs containing the PARP promoter and 5'UTR, the beta-glucuronidase coding region, and the selectively mutagenized or unaltered PARP 3'UTR were performed in procyclic and bloodstream T. brucei. The results of the reporter gene assays on the transformed cells indicate that there are at least two elements in the PARP 3'UTR which in bloodstream cells are involved in regulation of PARP expression and which appear to function as negative elements. In procyclic cells, there are two regions in which mutagenesis indicates positive cis-regulatory sequences, one of which has been previously defined (A. Hehl et al., 1994, Proc. Natl. Acad. Sci. USA 91, 370-374). These results indicate that multiple cis-acting elements within the PARP 3'UTR are involved in the developmental regulation of PARP expression and that regulation is controlled in a complex manner, presumably involving several cellular trans-acting factors.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005260 Female Females
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei

Related Publications

K Wilson, and L Uyetake, and J Boothroyd
January 1992, Progress in nucleic acid research and molecular biology,
K Wilson, and L Uyetake, and J Boothroyd
August 1990, Biochimica et biophysica acta,
K Wilson, and L Uyetake, and J Boothroyd
December 1992, Molecular microbiology,
K Wilson, and L Uyetake, and J Boothroyd
April 1994, Journal of bioenergetics and biomembranes,
K Wilson, and L Uyetake, and J Boothroyd
November 1988, Molecular and cellular biology,
K Wilson, and L Uyetake, and J Boothroyd
January 1986, Giornale di batteriologia, virologia ed immunologia,
K Wilson, and L Uyetake, and J Boothroyd
April 2001, Molecular therapy : the journal of the American Society of Gene Therapy,
K Wilson, and L Uyetake, and J Boothroyd
June 1992, Molecular and biochemical parasitology,
K Wilson, and L Uyetake, and J Boothroyd
April 1987, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!