Synthesis and biological evaluation of 2',3'-didehydro-2',3'- dideoxy-5-fluorocytidine (D4FC) analogues: discovery of carbocyclic nucleoside triphosphates with potent inhibitory activity against HIV-1 reverse transcriptase. 1999

J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.

The discovery of a novel cytosine nucleoside, beta-D-2', 3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC), as a potent antihuman immunodeficiency virus (HIV) agent led us to synthesize a series of analogues and derivatives of beta-D-D4FC that could be more selective and also possess increased glycosidic bond stability. The synthesized D-D4FC analogues were evaluated for anti-HIV-1 activity, anticancer activity, and cytotoxicity in various cells. The biological data demonstrated that the 5-substitution of beta-D-D4FC with bromine (6c) and iodine (6d) resulted in the loss of antiviral activity, and the alpha-D anomer (7a) of D-D4FC was also devoid of activity. The 5-fluorouracil analogues (6b and 7b) of D-D4FC were less potent and more cytotoxic than the parent compound, whereas the beta-L-D4FU (11) showed both potent anti-HIV-1 activity and cytotoxicity. N4- and 5'-O-acyl derivatives (17, 15a-c) of beta-D-D4FC exhibited comparable antiviral activity to beta-D-D4FC. In contrast, the N4-isopropyl derivative (20) of beta-D-D4FC was not active against HIV-1, even at 100 microM. The carbocyclic analogues (26a,b) of D4FC demonstrated weak activity against HIV-1 and no toxicity in various cells. The triphosphates (27a,b) of the carbocyclic nucleosides demonstrated potent inhibitory activity against recombinant HIV-1 reverse transcriptase at submicromolar concentrations. Of the compounds tested as potential anticancer agents, beta-D-, alpha-D-, and beta-L-D4FU (6b, 7b, 11) showed inhibitory activity against rat glioma and modest activity against human lung carcinoma, lymphoblastoid, and skin melanoma cells.

UI MeSH Term Description Entries
D010755 Organophosphates Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P( Organophosphate,Phosphates, Organic,Phosphoric Acid Esters,Organopyrophosphates,Acid Esters, Phosphoric,Esters, Phosphoric Acid,Organic Phosphates
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016047 Zalcitabine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication at low concentrations, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal toxic side effect is axonal degeneration resulting in peripheral neuropathy. 2',3'-Dideoxycytidine,Dideoxycytidine,ddC (Antiviral),HIVID Roche,Hivid,NSC-606170,2',3' Dideoxycytidine,NSC 606170,NSC606170
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
January 2003, Antiviral chemistry & chemotherapy,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
December 2002, Antiviral research,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
January 2004, Nucleosides, nucleotides & nucleic acids,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
March 2003, Antiviral chemistry & chemotherapy,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
January 1990, Journal of medicinal chemistry,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
January 2005, Nucleosides, nucleotides & nucleic acids,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
July 1998, Antimicrobial agents and chemotherapy,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
May 1996, Molecular pharmacology,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
July 2013, ChemMedChem,
J Shi, and J J McAtee, and S Schlueter Wirtz, and P Tharnish, and A Juodawlkis, and D C Liotta, and R F Schinazi
August 2011, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!