Effect of melittin on ion transport across cell membranes. 1997

S Yang, and G Carrasquer
Department of Medicine, University of Louisville, KY 40292, USA.

Extensive work with melittin has shown that the venom has multiple effects, probably, as a result of its interaction with negatively changed phospholipids. It inhibits well known transport pumps such as the Na(+)-K(+)-ATPase and the H(+)-K(+)-ATPase. Melittin increases the permeability of cell membranes to ions, particularly Na+ and indirectly Ca2+, because of the Na(+)-Ca(2+)-exchange. This effect results in marked morphological and functional changes, particularly in excitable tissues such as cardiac myocytes. In some other tissues, e.g., cornea, not only Na+ but Cl- permeability is also increased by melittin. Similar effects to melittin on H(+)-K(+)-ATPase have been found with the synthetic amphipathic polypeptide Trp-3.

UI MeSH Term Description Entries
D008555 Melitten Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes. Melittin,Mellitin
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D017506 H(+)-K(+)-Exchanging ATPase An enzyme isolated from the GASTRIC MUCOSA that catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions across the cell wall. This enzyme was formerly listed as EC 3.6.1.36. ATPase, Hydrogen, Potassium,Adenosinetriphosphatase, Hydrogen, Potassium,H(+)-K(+)-Transporting ATPase,Hydrogen, Potassium ATPase,Hydrogen, Potassium, Adenosinetriphosphatase,Adenosine Triphosphatase, Hydrogen, Potassium,Gastric H(+) K(+) ATPase,Hydrogen, Potassium, Adenosine Triphosphatase,Hydrogen-Potassium-Exchanging ATPase,Potassium Hydrogen ATPase,ATPase Hydrogen, Potassium,ATPase, Hydrogen-Potassium-Exchanging,ATPase, Potassium Hydrogen,Hydrogen Potassium Exchanging ATPase
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

S Yang, and G Carrasquer
January 1973, Postepy higieny i medycyny doswiadczalnej,
S Yang, and G Carrasquer
January 1987, Biofizika,
S Yang, and G Carrasquer
December 1975, Annals of biomedical engineering,
S Yang, and G Carrasquer
January 1995, Bioelectromagnetics,
S Yang, and G Carrasquer
September 1989, Pharmaceutical research,
S Yang, and G Carrasquer
January 1974, Ion exchange and membranes,
S Yang, and G Carrasquer
June 2000, Journal of photochemistry and photobiology. B, Biology,
S Yang, and G Carrasquer
January 1970, Annual review of physiology,
Copied contents to your clipboard!