Menstrual cycle variability in midazolam pharmacokinetics. 1999

E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
Anesthesiology Service, Puget Sound Veterans Affairs Health Care System, Seattle, Washington, USA.

Activity of cytochrome P450 3A4 (CYP3A4), the most abundant human P450 isoform and responsible for metabolizing approximately half of all therapeutic agents, has been speculated to vary during the menstrual cycle. This investigation evaluated CYP3A4 activity during the menstrual cycle, using midazolam clearance as a metabolic probe. Midazolam (1 mg i.v.) was administered to nonsmoking, nonpregnant female volunteers (N = 11, age 26 +/- 5 years) with normal menstrual cycles on three separate occasions during the same cycle: days 2 (menstrual phase), 13 (estradiol peak), and 21 (progesterone peak). Venous plasma midazolam concentrations were determined by gas chromatography-mass spectrometry. Midazolam clearance was determined by noncompartmental and compartmental analysis. Midazolam plasma disposition did not differ between phases of the menstrual cycle. There was no significant difference in any measure of midazolam clearance. Noncompartmental clearances (mean +/- SD) were 7.36 +/- 2.73, 6.34 +/- 3.59, and 6.23 +/- 2.04 ml/kg/min, respectively, on days 2, 13, and 21 of the menstrual cycle. These results suggest no difference in hepatic CYP3A4 activity on menstrual cycle days 2, 13, and 21. Consideration of menstrual cycle variability in the metabolism of CYP3A4 substrates does not appear indicated in the dosing or design of clinical trials.

UI MeSH Term Description Entries
D008597 Menstrual Cycle The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase. Endometrial Cycle,Ovarian Cycle,Cycle, Endometrial,Cycle, Menstrual,Cycle, Ovarian,Cycles, Endometrial,Cycles, Menstrual,Cycles, Ovarian,Endometrial Cycles,Menstrual Cycles,Ovarian Cycles
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D051544 Cytochrome P-450 CYP3A A cytochrome P-450 suptype that has specificity for a broad variety of lipophilic compounds, including STEROIDS; FATTY ACIDS; and XENOBIOTICS. This enzyme has clinical significance due to its ability to metabolize a diverse array of clinically important drugs such as CYCLOSPORINE; VERAPAMIL; and MIDAZOLAM. This enzyme also catalyzes the N-demethylation of ERYTHROMYCIN. CYP3A,CYP3A4,CYP3A5,Cytochrome P-450 CYP3A4,Cytochrome P-450 CYP3A5,Cytochrome P-450IIIA,Cytochrome P450 3A,Cytochrome P450 3A4,Cytochrome P450 3A5,Erythromycin N-Demethylase,Taurochenodeoxycholate 6-alpha-Monooxygenase,3A5, Cytochrome P450,6-alpha-Monooxygenase, Taurochenodeoxycholate,Cytochrome P 450 CYP3A,Cytochrome P 450 CYP3A4,Cytochrome P 450 CYP3A5,Cytochrome P 450IIIA,Erythromycin N Demethylase,N-Demethylase, Erythromycin,P-450 CYP3A, Cytochrome,P-450 CYP3A4, Cytochrome,P-450 CYP3A5, Cytochrome,P-450IIIA, Cytochrome,P450 3A, Cytochrome,P450 3A5, Cytochrome,Taurochenodeoxycholate 6 alpha Monooxygenase

Related Publications

E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
December 1986, Postgraduate medical journal,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
January 1983, Journal de gynecologie, obstetrique et biologie de la reproduction,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
January 2001, American journal of human biology : the official journal of the Human Biology Council,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
January 1998, Journal of applied toxicology : JAT,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
January 2006, Journal of obstetric, gynecologic, and neonatal nursing : JOGNN,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
January 1953, The Anatomical record,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
June 1968, JAMA,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
February 2011, Sports medicine (Auckland, N.Z.),
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
April 2013, Biological psychology,
E D Kharasch, and D Mautz, and T Senn, and G Lentz, and K Cox
June 1974, Perceptual and motor skills,
Copied contents to your clipboard!