Role for gamma interferon in control of herpes simplex virus type 1 reactivation. 1999

E Cantin, and B Tanamachi, and H Openshaw
Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010-3012, USA. ecantin@.coh.org

Observation of chronic inflammatory cells and associated high-level gamma interferon (IFN-gamma) production in ganglia during herpes simplex type 1 (HSV-1) latent infection in mice (E. M. Cantin, D. R. Hinton, J. Chen, and H. Openshaw, J. Virol. 69:4898-4905, 1995) prompted studies to determine a role of IFN-gamma in maintaining latency. Mice lacking IFN-gamma (GKO mice) or the IFN-gamma receptor (RGKO mice) were inoculated with HSV-1, and the course of the infection was compared with that in IFN-gamma-competent mice with the same genetic background (129/Sv//Ev mice). A time course study showed no significant difference in trigeminal ganglionic viral titers or the timing of establishment of latency. Spontaneous reactivation resulting in infectious virus in the ganglion did not occur during latency in any of the mice. However, 24 h after the application of hyperthermic stress to mice, HSV-1 antigens were detected in multiple neurons in the null mutant mice but in only a single neuron in the 129/Sv//Ev control mice. Mononuclear inflammatory cells clustered tightly around these reactivating neurons, and by 48 h, immunostaining was present in satellite cells as well. The incidence of hyperthermia-induced reactivation as determined by recovery of infectious virus from ganglia was significantly higher in the null mutant than in control mice: 11% in 129/Sv//Ev controls, 50% in GKO mice (P = 0.0002), and 33% in RGKO mice (P = 0.03). We concluded that IFN-gamma is not involved in the induction of reactivation but rather contributes to rapid suppression of HSV once it is reactivated.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions
D017735 Virus Latency The ability of a pathogenic virus to lie dormant within a cell (LATENT INFECTION). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors. Viral Latency,Latencies, Viral,Latencies, Virus,Latency, Viral,Latency, Virus,Viral Latencies,Virus Latencies
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

E Cantin, and B Tanamachi, and H Openshaw
November 2001, Journal of virology,
E Cantin, and B Tanamachi, and H Openshaw
August 1996, Journal of virology,
E Cantin, and B Tanamachi, and H Openshaw
November 1997, Virology,
E Cantin, and B Tanamachi, and H Openshaw
October 1996, Journal of leukocyte biology,
E Cantin, and B Tanamachi, and H Openshaw
January 1973, Intervirology,
E Cantin, and B Tanamachi, and H Openshaw
May 2015, Medecine sciences : M/S,
E Cantin, and B Tanamachi, and H Openshaw
October 2004, International journal of molecular medicine,
E Cantin, and B Tanamachi, and H Openshaw
May 2008, Virology,
E Cantin, and B Tanamachi, and H Openshaw
November 2002, Journal of virology,
Copied contents to your clipboard!