Regulation of mitochondrial KATP channel by redox agents. 1999

S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region 142292, Russia.

The ATP-dependent K+ channel (KATP) was purified from the inner mitochondrial membrane and reconstituted into lipid bilayer membranes. KATP activity was inhibited by high concentrations of ATP and ADP, but activated by low concentrations (up to 200 microM) of ADP. p-Diethylaminoethylbenzoate (DEB) acted as a KATP opener: at micromolar concentrations, it reversed inhibition by ATP and ADP and it also prevented KATP rundown. Pelargonidine, extracted from flowers of Pelargonium, reduced spontaneous activity of KATP channels and diminished their potentiation by DEB. Their opposite action on KATP corresponded with their opposite redox properties in reactions with free radicals: DEB behaved as an electron donor, whereas pelargonidine acted as an electron acceptor. We hypothesize that thiol groups on mitoKATP are targets for redox-active ligans.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000872 Anthocyanins A group of FLAVONOIDS derived from FLAVONOLS, which lack the ketone oxygen at the 4-position. They are glycosylated versions of cyanidin, pelargonidin or delphinidin. The conjugated bonds result in blue, red, and purple colors in flowers of plants. Anthocyanidin,Anthocyanidins,Anthocyanin,Leucoanthocyanidins
D001565 Benzoates Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure. Benzoate,Benzoic Acids,Acids, Benzoic
D001578 Benzopyrans Compounds with a core of fused benzo-pyran rings. Benzopyran,Chromene,Chromenes

Related Publications

S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
July 2011, Biochimica et biophysica acta,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
January 2007, Channels (Austin, Tex.),
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
April 1996, The Journal of biological chemistry,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
January 1992, Biofizika,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
September 2001, Molecular and cellular biochemistry,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
May 2022, Nature communications,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
May 1998, The Journal of biological chemistry,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
July 2003, Cardiovascular research,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
December 2016, Physiology international,
S M Grigoriev, and Y Y Skarga, and G D Mironova, and B S Marinov
May 2018, Diabetes,
Copied contents to your clipboard!