Thermotropic phase behavior of mixed-chain phosphatidylglycerols: implications for acyl chain packing in fully hydrated bilayers. 1999

R V Durvasula, and C H Huang
Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

In this communication we report the first systematic investigation of the thermodynamic properties of fully hydrated mixed-chain phosphatidylglycerols (PG) using high-resolution differential scanning calorimetry (DSC). The crystal structure of dimyristoylphosphatidylglycerol shows an acyl chain conformation that is nearly opposite to that of phosphatidylcholine (PC). In PC, the sn-1 chain is straight while the sn-2 chain contains a bend; for PG, the sn-1 contains a bend while the sn-2 chain is in the all-trans conformation (R.H. Pearson, I. Pascher, The molecular structure of lecithin dihydrate, Nature, 281 (1978) 499-501; I. Pascher, S. Sundell, K. Harlos, H. Eibl, Conformational and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol, Biochim. Biophys. Acta, 896 (1987) 77-88). If the structure of PG found in the single crystal can be extrapolated to that in the fully hydrated gel-state bilayer, the observed difference in acyl chain conformations implies that modulation of the acyl chain asymmetry will have an opposite effect on the thermotropic phase behavior of PG and PC. For example, it is expected, based on the crystal structures, that C(15):C(13)PG should have a higher main phase transition temperature (Tm) than C(14):C(14)PG, and C(13):C(15)PG should have a lower Tm than C(14):C(14)PG. However, our DSC studies show clearly that the expectation is not borne out by experimental data. Rather, the Tm values of C(15):C(13)PG, C(14):C(14)PG, and C(13):C(15)PG are 18.2 degrees C, 23.1 degrees C, and 24.4 degrees C, respectively. Several other PGs, each with a unique acyl chain composition, have also been studied in this laboratory using high-resolution DSC. It is shown that the acyl chain conformation of fully hydrated PG in general is nearly opposite to that seen in the PG crystal structure.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

R V Durvasula, and C H Huang
February 1981, Biochemistry,
R V Durvasula, and C H Huang
April 1993, Biophysical journal,
R V Durvasula, and C H Huang
March 2022, Chemistry and physics of lipids,
R V Durvasula, and C H Huang
January 2013, International journal of molecular sciences,
R V Durvasula, and C H Huang
September 2002, Biophysical journal,
R V Durvasula, and C H Huang
June 2006, Biophysical journal,
R V Durvasula, and C H Huang
February 1997, Biophysical journal,
R V Durvasula, and C H Huang
December 2005, The Journal of membrane biology,
R V Durvasula, and C H Huang
May 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics,
Copied contents to your clipboard!