Demonstration of in vivo mammogenic and lactogenic effects of recombinant ovine placental lactogen and mammogenic effect of recombinant ovine GH in ewes during artificial induction of lactation. 1999

G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
Unité de Recherches sur l'Endocrinologie du Placenta et de la Périnatalité, Laboratoire de Biologie Cellulaire et Moléculaire, INRA, 78352 Jouy en Josas Cedex, France.

The present study demonstrates that ovine placental lactogen (oPL) (ovine chorionic somatotrophin) may have an important role in the mammogenesis and/or lactogenesis of the ewe. Its effects were compared with that already described for ovine growth hormone (oGH). In the first experiment, 40 nulliparous ewes were induced to lactate by means of a 7 day (days 1-7) oestro-progestative treatment (E2+P4). The ewes from Group 1 (n=12) received no further treatment, while those of the other groups received either recombinant oGH (roGH, 28 micrograms/kg, i.m., twice daily, Group 2, n=12) or recombinant oPL (roPL, 79 micrograms/kg, i.m., twice daily, Group 3, n=12) from day 11 to 20. All ewes received 25 mg hydrocortisone acetate (HC) twice daily on days 18-20. Control Group 00 (n=2) received no steroid treatment at all, and the control Group 0 (n=2) received only the E2+P4 treatment. Thirteen ewes (three from each experimental group and the two of each control group) were slaughtered at the end of hormone treatments (day 21) before any milking stimulus. The 27 remaining ewes from Groups 1-3 were machine-milked and milk yields recorded daily from day 21 to 76. The E2+P4 treatment enhanced the plasma levels of oPRL, oGH and IGF-I between days 1 and 7 by 1.5, 2. 3 and 2.6 times respectively (P=0.002); roGH treatment induced a highly significant enhancement of IGF-I plasma levels from day 11 to 20, whereas a similar effect appeared for roPL-treated ewes only from day 17 to 20 (P<0.01). Eight weeks after the last exogenous hormone injections, milk yields of both roGH- and roPL-treated groups progressively rose to twice that of unsupplemented groups (P<0.001). The mammary DNA content on day 21 was higher for animals which received either oGH or oPL but, due to individual variations in so few samples (n=3), this difference was not significant. No beta-casein was measured in mammary tissue from control ewes, whereas steroid-treated ewes (E2+P4+HC) had higher casein concentrations regardless of subsequent hormonal treatment on days 11-20 (P<0.001). beta-Casein concentrations in mammary parenchyma of roGH-treated ewes did not differ from that of ewes which received only E2+P4+HC; roPL supplementation clearly enhanced expression of beta-casein (P<0.001). IGF-I stimulation by either roGH or roPL was more precisely examined during a second experiment, in which two twice-daily i.m. doses (58 or 116 micrograms/kg) of either roGH or roPL were administered to four groups of six ewes that were E2+P4 treated as those of Experiment 1. A control group (n=6) received no exogenous hormone from day 11 to 13. On day 13, hourly blood samples were taken from all ewes over 11 h. Both doses of roGH significantly stimulated IGF-I in a dose-dependent manner. The 58 micrograms/kg dose of roPL did not significantly stimulate IGF-I, but although being somewhat less efficient than the 58 micrograms/kg dose of roGH, the 116 micrograms/kg dose of roPL significantly stimulated IGF-I secretion (P<0. 001). These results suggest that mammogenesis and/or lactogenesis in the ewe is in part controlled by somatotrophic hormones such as oGH and oPL and that IGF-I could be one of the mediators of these hormones.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D010928 Placental Lactogen A polypeptide hormone of approximately 25 kDa that is produced by the SYNCYTIOTROPHOBLASTS of the PLACENTA, also known as chorionic somatomammotropin. It has both GROWTH HORMONE and PROLACTIN activities on growth, lactation, and luteal steroid production. In women, placental lactogen secretion begins soon after implantation and increases to 1 g or more a day in late pregnancy. Placental lactogen is also an insulin antagonist. Choriomammotropin,Chorionic Somatomammotropin, Human,Human Placental Lactogen,Lactogen Hormone, Placental,Mammotropic Hormone, Placental,Somatomammotropin, Chorionic,Choriomammotrophin,HCS (Human Chorionic Somatomammotropin),HPL (Human Placental Lactogen),PAPP-D,Placental Luteotropin,Pregnancy-Associated Plasma Protein D,Chorionic Somatomammotropin,Human Chorionic Somatomammotropin,Lactogen, Placental,Luteotropin, Placental,Placental Lactogen, Human,Placental Mammotropic Hormone,Pregnancy Associated Plasma Protein D
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
April 1997, Journal of dairy science,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
September 1997, Journal of animal science,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
February 1986, Endocrinology,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
October 1974, The Journal of endocrinology,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
December 1999, Biology of reproduction,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
February 1997, The Journal of endocrinology,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
March 1997, Journal of dairy science,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
August 1983, General and comparative endocrinology,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
October 1976, The Journal of endocrinology,
G Kann, and A Delobelle-Deroide, and L Belair, and A Gertler, and J Djiane
January 1978, Journal of reproduction and fertility,
Copied contents to your clipboard!