Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. 1999

M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, 94143, USA.

The recent cloning of two gamma-aminobutyric acid(B) (GABA(B)) receptor isoforms (GABA(B)R1a/b), which are probably splice variants of the same gene transcript, allowed us to develop an antiserum that recognized the receptors in fixed tissue and to map their distribution in the rat central nervous system (CNS). We also investigated whether GABA(B)R1 colocalizes with glutamic acid decarboxylase (GAD), a marker of GABAergic cell bodies and terminals. Although GABA(B)R1-like immunoreactivity (GABA(B)R1-LI) was distributed throughout the CNS, several distinct distribution patterns emerged: (1) all monoaminergic brainstem cell groups appeared to contain very high levels of GABA(B)R1, (2) a very high intensity of GABA(B)R1-LI was observed in the majority of the cholinergic regions in the CNS, with exception of motoneurons of the third through sixth cranial nerve nuclei, and (3) a low density of the receptor was observed in most of the nuclei that contain cell bodies of GABAergic projection neurons. The highest GABA(B)R1 labeling was observed in the thalamus, interpeduncular nucleus and medial habenula. Cell bodies were labeled throughout the neuroaxis. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. However, in immunofluorescent double-labeling experiments for GABA(B)R1 and GAD, we never observed GABA(B)R1-LI in GAD-positive axon terminals; this result suggests that the GABA(B)R1 may not function as an autoreceptor. Double labeling was observed in the cell bodies of Purkinje neurons and in some interneurons. In general, the immunohistochemical localization of the GABA(B)R1 correlates well with physiologic and autoradiographic data on the distribution of GABA(B) receptors, but some critical differences were noted. Thus, it is likely that additional GABA(B) receptor subtypes remain to be identified.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018080 Receptors, GABA-B A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS. Baclofen Receptors,GABA-B Receptors,Baclofen Receptor,GABA receptor rho1,GABA type B receptor, subunit 1,GABA(B)R1,GABA(B)R1 receptor,GABA(B)R1a protein,GABA(B)R1a receptor,GABA(B)R1b protein,GABA(B)R1b receptor,GABA-B Receptor,GABBR1 protein,GB1a protein,GB1b protein,GBR1B protein,Receptors, Baclofen,rho1 subunit, GABA receptor

Related Publications

M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
November 1998, The Journal of comparative neurology,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
January 2015, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
April 1996, The Journal of comparative neurology,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
September 1977, Proceedings of the National Academy of Sciences of the United States of America,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
October 1992, Neuroscience research,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
May 2004, The Journal of comparative neurology,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
May 2000, Brain research,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
April 1993, Neuroscience,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
October 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Margeta-Mitrovic, and I Mitrovic, and R C Riley, and L Y Jan, and A I Basbaum
November 2003, Cell and tissue research,
Copied contents to your clipboard!