The flatness of Siemens linear accelerator x-ray fields. 1999

B A Faddegon, and P O'Brien, and D L Mason
Toronto-Sunnybrook Regional Cancer Center, North York, Ontario, Canada.

The primary definer for Siemens MXE and MDX linear accelerators projects a circular opening with a radius of 25 cm at 100 cm from the target. Our measurements of photon beam profiles, however, indicate that the photon fluence drops to 95% of the central axis value at a radius of 18 cm. The flattening filter for these machines projects a flattened field size that is much smaller than the primary definer would allow. The clinical implications of this mismatch for large rectangular fields and for fields defined by asymmetric jaws are discussed and solutions are considered. A large field flattener was designed for our Siemens MXE 6 MV beam using Monte Carlo simulation of the treatment head and water phantom. The accuracy required of source and geometry details for dose distributions calculation is presented. The key parameters are the mean energy and focal spot size of the electron beam incident on the exit window, the material composition, and thickness profile of the exit window, target, flattener, and primary collimator, and the position of the primary collimator relative to the target. Profiles were more sensitive than central axis depth doses to simulation details. The beam energy and primary collimator position were selected to achieve good agreement between measured and calculated dose distributions. The flattener we designed with Monte Carlo was machined from brass and mounted on our MXE treatment unit. Measurements demonstrate that the large field flattener extends the useful radius of the field out to 22 cm, right into the penumbra cast by the primary collimator.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

B A Faddegon, and P O'Brien, and D L Mason
March 2013, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation,
B A Faddegon, and P O'Brien, and D L Mason
August 1983, International journal of radiation oncology, biology, physics,
B A Faddegon, and P O'Brien, and D L Mason
January 1975, The American journal of roentgenology, radium therapy, and nuclear medicine,
B A Faddegon, and P O'Brien, and D L Mason
April 1987, Health physics,
B A Faddegon, and P O'Brien, and D L Mason
February 1953, Nature,
B A Faddegon, and P O'Brien, and D L Mason
September 1996, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
B A Faddegon, and P O'Brien, and D L Mason
May 1999, Medical physics,
B A Faddegon, and P O'Brien, and D L Mason
May 2016, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation,
B A Faddegon, and P O'Brien, and D L Mason
January 1963, Radiology,
B A Faddegon, and P O'Brien, and D L Mason
January 2013, Medical physics,
Copied contents to your clipboard!