Off-axis x-ray spectra: a comparison of Monte Carlo simulated and computed x-ray spectra with measured spectra. 1999

M Bhat, and J Pattison, and G Bibbo, and M Caon
School of Physics and Electronic Systems Engineering, University of South Australia, Mawsan Lakes. mbhat@cancer.yah.sa.gov.au

The off-axis x-ray spectra from a constant potential x-ray generator were measured with a high purity germanium spectrometer cooled to liquid nitrogen temperature. The measured spectra were compared with off-axis x-ray spectra calculated using a code based on the semiempirical model developed by Tucker et al. and Monte Carlo simulated x-ray spectra using the EGS4 code system. In this study, both the Tucker model, and the EGS4 code system, were found to produce off-axis bremsstrahlung x-ray spectra which agreed well with the spectra measured at three emerging angles. In the measured and the EGS4 generated spectra the total K-characteristic peaks were in increasing order, as observed in the anode to cathode direction, whereas the Tucker model produced maximum total K-characteristic peaks at the 6 degrees anode side, and lesser amounts at the central axis and the 6 degrees cathode side. Large differences in the total K-characteristic lines is seen among the three different methods. The EGS4 code system was able to produce x-ray spectra for a combination of target materials.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005857 Germanium A rare metal element with a blue-gray appearance and atomic symbol Ge, atomic number 32, and atomic weight 72.63.
D013052 Spectrometry, X-Ray Emission The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods. Particle-Induced X-Ray Emission Spectrometry,Proton-Induced X-Ray Emission Spectrometry,Spectrometry, Particle-Induced X-Ray Emission,Spectrometry, Proton-Induced X-Ray Emission,Spectrometry, X-Ray Fluorescence,X-Ray Emission Spectrometry,X-Ray Emission Spectroscopy,X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectroscopy,Energy Dispersive X-Ray Spectrometry,Energy Dispersive X-Ray Spectroscopy,Particle Induced X Ray Emission Spectrometry,Proton Induced X Ray Emission Spectrometry,Spectrometry, Particle Induced X Ray Emission,Spectrometry, Proton Induced X Ray Emission,Spectrometry, Xray Emission,Wavelength Dispersive X-Ray Fluorescence Spectrometry,Wavelength Dispersive X-Ray Fluorescence Spectroscopy,Wavelength Dispersive X-Ray Spectrometry,Wavelength Dispersive X-Ray Spectroscopy,X-Ray Fluorescence Spectroscopy,Xray Emission Spectroscopy,Emission Spectrometry, X-Ray,Emission Spectrometry, Xray,Emission Spectroscopy, X-Ray,Emission Spectroscopy, Xray,Energy Dispersive X Ray Fluorescence Spectrometry,Energy Dispersive X Ray Fluorescence Spectroscopy,Energy Dispersive X Ray Spectrometry,Energy Dispersive X Ray Spectroscopy,Fluorescence Spectrometry, X-Ray,Fluorescence Spectroscopy, X-Ray,Spectrometry, X Ray Emission,Spectrometry, X Ray Fluorescence,Spectroscopy, X-Ray Emission,Spectroscopy, X-Ray Fluorescence,Spectroscopy, Xray Emission,Wavelength Dispersive X Ray Fluorescence Spectrometry,Wavelength Dispersive X Ray Fluorescence Spectroscopy,Wavelength Dispersive X Ray Spectrometry,Wavelength Dispersive X Ray Spectroscopy,X Ray Emission Spectrometry,X Ray Emission Spectroscopy,X Ray Fluorescence Spectrometry,X Ray Fluorescence Spectroscopy,X-Ray Fluorescence Spectroscopies,Xray Emission Spectrometry
D014159 Transducers Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Transducer
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations

Related Publications

M Bhat, and J Pattison, and G Bibbo, and M Caon
September 2014, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
M Bhat, and J Pattison, and G Bibbo, and M Caon
February 1984, Physics in medicine and biology,
M Bhat, and J Pattison, and G Bibbo, and M Caon
May 2000, Physics in medicine and biology,
M Bhat, and J Pattison, and G Bibbo, and M Caon
October 2007, Physics in medicine and biology,
M Bhat, and J Pattison, and G Bibbo, and M Caon
June 2014, Guang pu xue yu guang pu fen xi = Guang pu,
M Bhat, and J Pattison, and G Bibbo, and M Caon
February 2006, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,
M Bhat, and J Pattison, and G Bibbo, and M Caon
June 2014, Journal of radiological protection : official journal of the Society for Radiological Protection,
M Bhat, and J Pattison, and G Bibbo, and M Caon
September 2009, Medical physics,
M Bhat, and J Pattison, and G Bibbo, and M Caon
April 2012, Physics in medicine and biology,
M Bhat, and J Pattison, and G Bibbo, and M Caon
January 2010, Zeitschrift fur medizinische Physik,
Copied contents to your clipboard!