Codon usage bias and base composition in MHC genes in humans and common chimpanzees. 1999

S K McWeeney, and A M Valdes
Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California at Berkeley, Berkeley, CA 94720-3140, USA. shannon@allele5.biol.berkeley.edu

Codon bias and base composition in major histocompatibility complex (MHC) sequences have been studied for both class I and II loci in Homo sapiens and Pan troglodytes. There is low to moderate codon bias for the MHC of humans and chimpanzees. In the class I loci, the same level of moderate codon bias is seen for HLA-B, HLA-C, Patr-A, Patr-B, and Patr-C, while at HLA-A the level of codon bias is lower. There is a correlation between codon usage bias and G+C content in the A and B loci in humans and chimps, but not at the C locus. To examine the effect of diversifying selection on codon bias, we subdivided class I alleles into antigen recognition site (ARS) and non-ARS codons. ARS codons had lower bias than non-ARS codons. This may indicate that the constraint of codon bias on nucleotide substitution may be selected against in ARS codons. At the class II loci, there are distinct differences between alpha and beta chain genes with respect to codon usage, with the beta chain genes being much more biased. Species-specific differences in base composition were seen in exon 2 at the DRB1 locus, with lower GC content in chimpanzees. Considering the complex evolutionary history of MHC genes, the study of codon usage patterns provides us with a better understanding of both the evolutionary history of these genes and the evolution of synonymous codon usage in genes under natural selection.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D002679 Pan troglodytes The common chimpanzee, a species of the genus Pan, family HOMINIDAE. It lives in Africa, primarily in the tropical rainforests. There are a number of recognized subspecies. Chimpanzee,Chimpanzee troglodytes,Chimpanzee troglodyte,Chimpanzees,Pan troglodyte,troglodyte, Pan,troglodytes, Chimpanzee
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

S K McWeeney, and A M Valdes
July 1993, Genetics,
S K McWeeney, and A M Valdes
June 2005, Yi chuan xue bao = Acta genetica Sinica,
S K McWeeney, and A M Valdes
April 2001, Journal of molecular evolution,
S K McWeeney, and A M Valdes
May 1996, Journal of molecular evolution,
S K McWeeney, and A M Valdes
March 2001, Molecular biology and evolution,
S K McWeeney, and A M Valdes
February 2018, Andrologia,
S K McWeeney, and A M Valdes
January 2022, Molecular biology reports,
S K McWeeney, and A M Valdes
March 2011, Virology journal,
S K McWeeney, and A M Valdes
January 2020, Frontiers in cell and developmental biology,
Copied contents to your clipboard!