Na/K-ATPase under oxidative stress: molecular mechanisms of injury. 1999

D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.

1. The authors compare oxidative injury to brain and kidney Na/K-ATPase using in vitro and in vivo approaches. The substrate dependence of dog kidney Na/K-ATPase was examined both before and after partial hydrogen peroxide modification. A computer simulation model was used for calculating kinetic parameters. 2. The substrate dependence curve for the unmodified endogenous enzyme displayed a typical curve with an intermediate plateau, adequately described by the sum of hyperbolic and sigmoidal components. 3. The modified enzyme demonstrated a dependent curve that closely approximates normal hyperbola. The estimated ATP K(m) value for the endogenous enzyme was about 85 microM; the Kh was equal to 800 microM. The maximal number of protomers interacting was 8. Following oxidative modification, the enzyme substrate dependence curve did not show a significant change in the maximal protomer rate Vm, while the K(m) was increased slightly and interprotomer interaction was abolished. 4. Na/K-ATPase from an ischemic gerbil brain showed a 22% decrease in specific activity. The maximal rate of ATP hydrolysis by an enzyme protomer changed slightly. but the sigmoidal component, characterizing the enzyme's ability to form oligomers was abolished completely. The K(m) value was almost unchanged, but the Hill coefficient fell to 1. These data show that Na/K-ATPase molecules isolated from the ischemic brain have lost the ability to interact with one another. 5. We suggest that the most important consequence of oxidative modification is Na/K-ATPase oligomeric structure formation and subsequent hydrolysis rate suppression.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
November 1997, Annals of the New York Academy of Sciences,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
March 1996, Biulleten' eksperimental'noi biologii i meditsiny,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
April 2017, Apoptosis : an international journal on programmed cell death,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
April 2003, Annals of the New York Academy of Sciences,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
June 1995, Doklady Akademii nauk,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
February 1999, Cellular and molecular neurobiology,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
May 1984, Biulleten' eksperimental'noi biologii i meditsiny,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
January 1990, Progress in nucleic acid research and molecular biology,
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
March 2017, Antioxidants (Basel, Switzerland),
D Dobrota, and M Matejovicova, and E G Kurella, and A A Boldyrev
January 1990, Ceskoslovenska fysiologie,
Copied contents to your clipboard!