Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. 1999

C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
Department of Pharmacology and Therapeutics, Department of Gynecologic Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, 14263, USA.

Sialoglycans on the cell surface of human colon cancer (HCC) cells have been implicated in cellular adhesion and metastasis. To clarify the role of N-acetylneuraminic acid (NeuAc) linked alpha2,3 to galactose (Gal) on the surface of HCC cells, we studied the intercellular adhesion of HCC cell lines expressing increasing NeuAcalpha2,3Gal-R. Our model system consisted of the HCC SW48 cell line, which inherently possesses low levels of cell surface alpha2,3 and alpha2,6 sialoglycans. To generate SW48 clonal variants with elevated cell surface NeuAcalpha2,3Gal-R linkages, we transfected the expression vector, pcDNA3, containing either rat liver cDNA encoding Galbeta1,3(4)GlcNAc alpha2,3 sialyltransferase (ST3Gal III) or human placental cDNA encoding Galbeta1,3GalNAc/Galbeta1,4GlcNAc alpha2,3 sialyltransferase (ST3Gal IV) into SW48 cells. Selection of neomycin-resistant clones (600 microgram G418/ml) having a higher percentage of cells expressing NeuAcalpha2,3Gal-R (up to 85% positive Maackia amurenis agglutinin staining compared with 30% for wild type cells) was performed. These ST3Gal III and ST3Gal IV clonal variants demonstrated increased adherence to IL-1beta-activated human umbilical vein endothelial cells (HUVEC) (up to 90% adherent cells compared with 63% for wild type cells). Interestingly, ST3Gal III and ST3Gal IV clonal variants also bound non-activated HUVEC up to 4-fold more effectively than wild type cells. Cell surface NeuAcalpha2,3Gal-R expression within the various SW48 clonal variants correlated directly with increased adhesion to HUVEC (r=0.84). Using HCC HT-29 cells, which express high levels of surface NeuAcalpha2,3Gal-R, addition of synthetic sialyl, sulfo or GalNAc Lewis X structures were found to specifically inhibit intercellular adhesion. At 1.0mM, NeuAcalpha2,3Galbeta1,3(Fucalpha1, 4)GlcNAc-OH and Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(SE-6Galbeta1++ +, 3)GalNAcalpha1-O-methyl inhibited HT-29 cell adhesion to IL-1beta-stimulated HUVEC by 100% and 68%, respectively. GalNAcbeta1, 4(Fucalpha1,3)GlcNAcbeta1-O-methyl and GalNAcbeta1,4(Fucalpha1, 3)GlcNAcbeta1,6Manalpha1,6Manbeta1-0-C30H61, however, did not possess inhibitory activity. In conclusion, these studies demonstrated that cell surface NeuAcalpha2,3Gal-R expression is involved in HCC cellular adhesion to HUVEC. These specific carbohydrate-mediated intercellular adhesive events may play an important role in tumor angiogenesis, metastasis and growth control.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005697 Galactosides Glycosides formed by the reaction of the hydroxyl group on the anomeric carbon atom of galactose with an alcohol to form an acetal. They include both alpha- and beta-galactosides.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
May 2009, Biochemical and biophysical research communications,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
August 2004, Oncology reports,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
October 1983, The Biochemical journal,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
October 2012, Journal of biomedical science,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
June 1975, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
November 1964, Clinical chemistry,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
January 2018, OncoTargets and therapy,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
August 1994, Cancer research,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
May 1962, Clinica chimica acta; international journal of clinical chemistry,
C J Dimitroff, and P Pera, and F Dall'Olio, and K L Matta, and E V Chandrasekaran, and J T Lau, and R J Bernacki
April 2010, Biomaterials,
Copied contents to your clipboard!