Rho GTPases in development. 1999

J Settleman
Massachusetts General Hospital Cancer Center, Charlestown, USA.

It is becoming increasingly clear that the complex family of Rho-related GTPases and their associated regulators and targets are essential mediators of a variety of morphogenetic events required for normal development of multicellular organisms. It is worth noting that the results obtained thus far indicate that the Rho family proteins are largely associated with the regulation of morphogenesis, as opposed to other essential developmental processes such as cell proliferation and cell fate determination. Accumulating evidence also suggests that the role of these proteins and their associated signaling pathways in morphogenesis is in many, but not necessarily all, cases related to their ability to affect the organization of the actin cytoskeleton. Thus, these in vivo observations have served to corroborate similar findings in numerous cultured cell studies. As described, the power of genetics, particularly in Drosophila and C. elegans, has been critical to the recent identification and functional characterization of several Rho family signaling components. Moreover, evidence suggests that the highly evolutionarily conserved structures of many of these proteins translate into conservation of function as well. Thus, it will be possible, in many cases, to extrapolate the findings in the simple systems described herein to higher eukaryotes, including humans. Expanding use of these genetic model systems to dissect Rho-mediated signaling pathways in vivo will undoubtedly lead to a flood of new insights into the organization and function of these pathways in the coming years, especially in development. As the C. elegans genome sequencing effort nears completion and with the Drosophila genome project well underway, the identification of novel relevant genes will proceed with even greater speed. In addition, the rapidly expanding use of mouse knockout strategies, combined with recent developments in the associated knockout technology, will also contribute greatly to the investigation of mammalain Rho signaling pathways and their roles in development.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine
D020741 rho GTP-Binding Proteins A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47. rho G-Proteins,rho GTPase,rho GTPases,rho Small GTP-Binding Proteins,P21 (rho)Protein,rho GTP-Binding Protein,rho Protein P21,G-Proteins, rho,GTP-Binding Protein, rho,GTP-Binding Proteins, rho,GTPase, rho,GTPases, rho,P21, rho Protein,rho G Proteins,rho GTP Binding Protein,rho GTP Binding Proteins,rho Small GTP Binding Proteins

Related Publications

J Settleman
January 2014, Small GTPases,
J Settleman
October 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Settleman
January 2012, Small GTPases,
J Settleman
August 1998, The Journal of biological chemistry,
J Settleman
June 2004, Current opinion in neurobiology,
J Settleman
March 2019, Small GTPases,
J Settleman
January 2005, Genes & development,
Copied contents to your clipboard!