Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. 1999

D Pei
Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA. peixx003@tc.umn.edu

A new member of the membrane-type matrix metalloproteinase (MT-MMP) subfamily tentatively named MT5-MMP was isolated from mouse brain cDNA library. It is predicted to contain (i) a candidate signal sequence, (ii) a propeptide region with the highly conserved PRCGVPD sequence, (iii) a potential furin recognition motif RRRRNKR, (iv) a zinc-binding catalytic domain, (v) a hemopexin-like domain, (vi) a 24-residue hydrophobic domain as a potential transmembrane domain, and (vii) a short cytosolic domain. Reverse transcriptase-polymerase chain reaction analysis of its transcripts indicates that MT5-MMP is expressed in a brain-specific manner consistent with the origin of its EST clone from cerebellum. It is also highly expressed during embryonic development at stages day 11 and 15. Like other MT-MMPs, MT5-MMP specifically activates progelatinase A when co-expressed in Madin-Darby canine kidney cells. Its ability to activate progelatinase A is dependent on its proteolytic activity since a mutation converting Glu to Ala in the zinc binding motif HE255LGH renders MT5-MMP inactive against progelatinase A. In contrast to other MT-MMPs, MT5-MMP tends to shed from cell surface as soluble proteinases, thus offering flexibility as both a cell bound and soluble proteinase for extracellular matrix remodeling processes. Taken together, these properties serve to distinguish MT5-MMP as a versatile MT-MMP playing an important role in extracellular matrix remodeling events in the brain and during embryonic development.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

D Pei
April 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire,
D Pei
January 2017, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Copied contents to your clipboard!