In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. 1999

N R Zahniser, and G A Larson, and G A Gerhardt
Department of Pharmacology, University of Colorado Health Sciences Center, Denver, USA. nancy.zahniser@uchsc.edu

Dopamine transporter (DAT) inhibitors are expected to decrease dopamine (DA) clearance from the extracellular space of the brain. However, mazindol and cocaine have been reported to "anomalously" increase DA clearance rate. To better understand in vivo DAT activity both in the absence and presence of DAT inhibitors, clearance of exogenously applied DA was measured in dorsal striata of urethane-anesthetized rats using high-speed chronoamperometry. As higher amounts of DA were ejected, DA signal amplitudes, but not time courses, increased. Clearance rates increased until near maximal rates of 0.3 to 0.5 microM/s were attained. Provided baseline clearance rates were relatively low (< 0.1 microM/s), local application of either nomifensine or cocaine markedly increased exogenous DA signal amplitudes and time courses. Relative to the low baseline group, locally applied nomifensine decreased clearance rate when baseline clearance was high ( approximately 0.4 microM/s). However, even when baseline clearance rates were high, systemic injection of nomifensine, mazindol, GBR 12909, or benztropine increased DA signal amplitudes to a greater extent than time courses, consistent with the observed increases in clearance rates. In contrast, despite low baseline clearance rates, systemic injection of cocaine, WIN 35,428, or d-amphetamine preferentially increased DA signal time course, consistent with the observed decreases in clearance rates. Our results emphasize that as extracellular DA concentrations increase, DAT velocity increases to a maximum, partially explaining the ability of DAT inhibitors to increase DA clearance rates. However, by itself, kinetic activation is not sufficient to explain the ability of certain systemically administered DAT inhibitors to anomalously increase DA clearance.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017072 Neostriatum The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.

Related Publications

N R Zahniser, and G A Larson, and G A Gerhardt
January 2013, Neurochemistry international,
N R Zahniser, and G A Larson, and G A Gerhardt
March 2012, Neurochemistry international,
N R Zahniser, and G A Larson, and G A Gerhardt
January 1990, Brain research. Brain research reviews,
N R Zahniser, and G A Larson, and G A Gerhardt
May 2006, Neuroscience letters,
N R Zahniser, and G A Larson, and G A Gerhardt
October 1989, No to shinkei = Brain and nerve,
N R Zahniser, and G A Larson, and G A Gerhardt
July 1998, Journal of neurochemistry,
N R Zahniser, and G A Larson, and G A Gerhardt
April 1997, Journal of neuroscience methods,
N R Zahniser, and G A Larson, and G A Gerhardt
February 2000, Neuropharmacology,
N R Zahniser, and G A Larson, and G A Gerhardt
June 1998, Journal of neuroscience research,
Copied contents to your clipboard!