Inactivated state dependence of sodium channel modulation by beta-scorpion toxin. 1999

R G Tsushima, and A Borges, and P H Backx
Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, M5G 1L7 Canada.

We have examined the effects of a beta-scorpion toxin purified from the venom of the Venezuelan scorpion Tityus discrepans, TdVIII, on heterologously expressed rat skeletal muscle Na+ channels (rSkM1). TdVIII (100 nM) produced a leftward shift in the voltage dependence of activation and reduced the peak Na+ conductance of rSkM1 channels coexpressed with the rat brain beta1 subunit in Xenopus laevis oocytes, suggesting that TdVIII is a beta-scorpion toxin. These effects did not depend on the presence of the beta1 subunit. Modification of rSkM1 activation by TdVIII could be augmented by increasing the rate of stimulation (enhanced use-dependence). Shifts in channel activation were also enhanced by introducing conditioning pulses to -10 mV, and this enhancement increased with conditioning pulse duration. On the other hand, TdVIII did not affect the activation of fast-inactivation deficient mutant Na+ channels, I1303Q/ F1304Q/M1305Q. These results suggest that modulation of rSkM1 Na+ channel gating by TdVIII depends on the toxin interacting with the inactivated state of the alpha subunit.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012604 Scorpion Venoms Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic. Scorpion Toxin,Scorpion Toxins,Scorpion Venom Peptide,Tityus serrulatus Venom,Scorpion Venom,alpha-Scorpion Toxin,beta-Scorpion Toxin,gamma-Scorpion Toxin,Peptide, Scorpion Venom,Toxin, Scorpion,Toxin, alpha-Scorpion,Toxin, beta-Scorpion,Venom Peptide, Scorpion,Venom, Scorpion,Venom, Tityus serrulatus,alpha Scorpion Toxin,beta Scorpion Toxin,gamma Scorpion Toxin
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

R G Tsushima, and A Borges, and P H Backx
February 2007, Toxicon : official journal of the International Society on Toxinology,
R G Tsushima, and A Borges, and P H Backx
September 2007, The Journal of general physiology,
R G Tsushima, and A Borges, and P H Backx
September 1983, Biochemical and biophysical research communications,
R G Tsushima, and A Borges, and P H Backx
June 1986, Journal of neurochemistry,
R G Tsushima, and A Borges, and P H Backx
January 2016, Channels (Austin, Tex.),
R G Tsushima, and A Borges, and P H Backx
March 2000, Journal of neurophysiology,
R G Tsushima, and A Borges, and P H Backx
July 2023, Biochimica et biophysica acta. Proteins and proteomics,
Copied contents to your clipboard!