Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. 1998

G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
Department of Chemistry, Massey University, Palmerston North, New Zealand.

The three-dimensional structure of a form of human apolactoferrin, in which one lobe (the N-lobe) has an open conformation and the other lobe (the C-lobe) is closed, has been refined at 2.0 A resolution. The refinement, by restrained least-squares methods, used synchrotron radiation X-ray diffraction data combined with a lower resolution diffractometer data set. The final refined model (5346 protein atoms from residues 1-691, two Cl- ions and 363 water molecules) gives a crystallographic R factor of 0.201 (Rfree = 0. 286) for all 51305 reflections in the resolution range 10.0-2.0 A. The conformational change in the N-lobe, which opens up the binding cleft, involves a 54 degrees rotation of the N2 domain relative to the N1 domain. This also results in a small reorientation of the two lobes relative to one another with a further approximately 730 A2 of surface area being buried as the N2 domain contacts the C-lobe and the inter-lobe helix. These new contacts also involve the C-terminal helix and provide a mechanism through which the conformational and iron-binding status of the N-lobe can be signalled to the C-lobe. Surface-area calculations indicate a fine balance between open and closed forms of lactoferrin, which both have essentially the same solvent-accessible surface. Chloride ions are bound in the anion-binding sites of both lobes, emphasizing the functional significance of these sites. The closed configuration of the C-lobe, attributed in part to weak stabilization by crystal packing interactions, has important implications for lactoferrin dynamics. It shows that a stable closed structure, essentially identical to that of the iron-bound form, can be formed in the absence of iron binding.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001059 Apoproteins The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS). Apoprotein

Related Publications

G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
April 1990, Nature,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
October 1989, Journal of molecular biology,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
October 1999, Journal of molecular biology,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
January 1978, The Journal of biological chemistry,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
May 1983, Biochemistry,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
August 1992, Journal of molecular biology,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
December 1991, Acta crystallographica. Section B, Structural science,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
May 2007, Biochemical and biophysical research communications,
G B Jameson, and B F Anderson, and G E Norris, and D H Thomas, and E N Baker
January 2017, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!