NF-kappaB regulates Fas/APO-1/CD95- and TCR- mediated apoptosis of T lymphocytes. 1999

E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
Laboratory of Immunology, NIAID, NIH, Bethesda, MD 20892-1892, USA.

The maintenance of lymphocyte homeostasis by apoptosis is a critical regulatory mechanism in the normal immune system. The transcription factor NF-kappaB has been shown to play a role in protecting cells against death mediated by TNF We show here that NF-kappaB also has a role in regulating Fas/APO-1/CD95-mediated death, a major pathway of peripheral T cell death. Transfection of Jurkat cells with the NF-kappaB subunits p50 and p65 confers resistance against Fas-mediated apoptosis. Reciprocally, inhibition of NF-kappaB activation by a soluble peptide inhibitor or a dominant form of the NF-kappaB inhibitor, IkappaB, makes the cells more susceptible to Fas-mediated apoptosis. Furthermore, inhibition of NF-kappaB activation by a soluble peptide inhibitor rendered a T cell hybridoma more susceptible to TCR-mediated apoptosis. Correspondingly, transfection of p50 and p65 provided considerable protection from TCR-mediated apoptosis. These observations were corroborated by studies on Fas-mediated death in primary T cells. Concanavalin A-activated cycling T cell blasts from mice that are transgenic for the dominant IkappaB molecule have increased sensitivity to Fas-mediated apoptosis, associated with a down-regulation of NF-kappaB complexes in the nucleus. In addition, blocking TNF, itself a positive regulator of NF-kappaB, with neutralizing antibodies renders the cells more susceptible to anti-Fas-mediated apoptosis. In summary, our results provide compelling evidence that NF-kappaB protects against Fas-mediated death and is likely to be an important regulator of T cell homeostasis and tolerance.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
October 1997, Journal of immunology (Baltimore, Md. : 1950),
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
October 1998, Current opinion in immunology,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
January 1996, International immunology,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
January 1999, Advances in immunology,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
December 1996, Leukemia & lymphoma,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
February 2000, European journal of immunology,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
April 1998, Blood,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
April 1999, Journal of immunology (Baltimore, Md. : 1950),
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
August 1996, The Journal of experimental medicine,
E Dudley, and F Hornung, and L Zheng, and D Scherer, and D Ballard, and M Lenardo
February 1995, Nature,
Copied contents to your clipboard!