Removal of N-terminal polyhistidine tags from recombinant proteins using engineered aminopeptidases. 1999

J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
UNIZYME Laboratories, Dr. Neergaards Vej 17, Horsholm, DK-2970, Denmark. jp@unizyme.dk

We have developed a specific and efficient method for complete removal of polyhistidine purification tags (HisTags) from the N-termini of target proteins. The method is based on the use of the aminopeptidase dipeptidyl peptidase I (DPPI), either alone or in combination with glutamine cyclotransferase (GCT) and pyroglutamyl aminopeptidase (PGAP). In both cases, the HisTag is cleaved off by DPPI, which catalyzes a stepwise excision of a wide range of dipeptides from the N-terminus of a peptide chain. Some sequences, however, are resistant to DPPI cleavage and a number of mature proteins have nonsubstrate N-termini which protects them against digestion. For such proteins, HisTags composed of an even number of residues can be cleaved off by treatment with DPPI alone. When the target protein is unprotected against DPPI, a blocking group is generated enzymatically from a glutamine residue inserted between the HisTag and the target protein. A protein with a HisTag-Gln extension is incubated with both DPPI and GCT. As above, the polyhistidine sequence is cleaved off by DPPI, but when the glutamine residue appears in the N-terminus, it is immediately converted into a pyroglutamyl residue by an excess of GCT and further DPPI digestion is prevented. The desired sequence is finally obtained by excision of the pyroglutamyl residue with PGAP. All the enzymes employed can bind to immobilized metal affinity chromatography (IMAC) matrices, and in this paper we demonstrate a simple and highly effective process combining IMAC purification of His-tagged proteins, our aminopeptidase-based method for specific excision of HisTags and use of subtractive IMAC for removing processing enzymes. Typical recoveries were 75-90% for the enzymatic processing and subtractive IMAC. The integrated process holds promises for use in large-scale production of pharmaceutical proteins because of a simple overall design, use of robust and inexpensive matrices, and use of enzymes of either recombinant or plant origin.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011751 Pyroglutamyl-Peptidase I An enzyme that catalyzes the release of a N-terminal pyroglutamyl group from a polypeptide provided the next residue is not proline. It is inhibited by thiol-blocking reagents and occurs in mammalian tissues, microorganisms, and plants. (From Enzyme Nomenclature, 1992) EC 3.4.19.3. 5-Oxoprolyl-Peptidase,Pyroglutamate Aminopeptidase,Pyrrolidonecarboxylate Peptidase,Pyrrolidonyl Peptidase,Pyroglutamyl-Peptide Hydrolase,5 Oxoprolyl Peptidase,Aminopeptidase, Pyroglutamate,Peptidase, Pyrrolidonecarboxylate,Peptidase, Pyrrolidonyl,Pyroglutamyl Peptidase I,Pyroglutamyl Peptide Hydrolase
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004152 Dipeptidyl-Peptidases and Tripeptidyl-Peptidases A subclass of exopeptidases that includes enzymes which cleave either two or three AMINO ACIDS from the end of a peptide chain. Dipeptidyl Peptidase,Dipeptidyl Peptidases,Dipeptidylpeptide Hydrolase,Tripeptidyl-Peptidase,Dipeptidylpeptide Hydrolases,Tripeptidyl-Peptidases,Dipeptidyl Peptidases and Tripeptidyl Peptidases,Hydrolase, Dipeptidylpeptide,Peptidase, Dipeptidyl,Tripeptidyl Peptidase,Tripeptidyl Peptidases,Tripeptidyl-Peptidases and Dipeptidyl-Peptidases
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
January 2000, Methods in enzymology,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
July 2004, Protein science : a publication of the Protein Society,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
September 2011, Protein expression and purification,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
November 2022, Journal of the American Chemical Society,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
May 2001, Current protocols in protein science,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
February 2011, Current protocols in protein science,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
February 1978, Biochemistry,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
September 2002, Journal of biomolecular techniques : JBT,
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
May 2023, Biotech (Basel (Switzerland)),
J Pedersen, and C Lauritzen, and M T Madsen, and S Weis Dahl
January 2020, Frontiers in plant science,
Copied contents to your clipboard!