IS903 transposase mutants that suppress defective inverted repeats. 1999

N P Tavakoli, and K M Derbyshire
Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, USA.

The inverted repeats (IRs) of the insertion element IS903 are composed of two functional regions. An inner region, consisting of basepairs 6-18, is the transposase binding site. The outer region (positions 1-3) is not contacted during initial transposase binding, but is essential for efficient transposition. We have examined the interaction of the IR with the transposase by isolating transposase suppressors of IR mutations. These suppressors define two patches within the N-terminus of the protein. One class of suppressors, which rescued the majority of outer IR mutants tested, contained mutations in close proximity to an aspartate residue (D121) believed to form part of the catalytic DDE motif, suggesting that their suppressive effect is in the positioning of the catalytic site at the terminus of the transposon. The hypertransposition phenotype of mutant VA119 is also consistent with this hypothesis. The second class was more allele specific and preferentially suppressed a mutation at position 3 of the IR. Finally, we showed that mutations at the termini of the IR elevate the frequency of cointegrate formation by IS903. Other outer IR mutations did not have this effect. These data are consistent with the terminal bases of the transposon playing multiple and distinct roles in transposition.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D019895 Transposases Enzymes that recombine DNA segments by a process which involves the formation of a synapse between two DNA helices, the cleavage of single strands from each DNA helix and the ligation of a DNA strand from one DNA helix to the other. The resulting DNA structure is called a Holliday junction which can be resolved by DNA REPLICATION or by HOLLIDAY JUNCTION RESOLVASES. Transposase
D020079 Terminal Repeat Sequences Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept. Delta Elements,Flanking Repeat Sequences,Inverted Terminal Repeat,Long Terminal Repeat,R Repetitive Sequence,Terminal Repeat,Delta Element,Element, Delta,Elements, Delta,Flanking Repeat Sequence,Long Terminal Repeats,R Repetitive Sequences,Repeat Sequence, Flanking,Repeat Sequence, Terminal,Repeat Sequences, Flanking,Repeat Sequences, Terminal,Repeat, Long Terminal,Repeat, Terminal,Repeats, Long Terminal,Repeats, Terminal,Repetitive Sequence, R,Repetitive Sequences, R,Sequence, Flanking Repeat,Sequence, R Repetitive,Sequence, Terminal Repeat,Sequences, Flanking Repeat,Sequences, R Repetitive,Sequences, Terminal Repeat,Terminal Repeat Sequence,Terminal Repeat, Long,Terminal Repeats,Terminal Repeats, Long

Related Publications

N P Tavakoli, and K M Derbyshire
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
N P Tavakoli, and K M Derbyshire
September 1992, The EMBO journal,
N P Tavakoli, and K M Derbyshire
June 1994, Genetics,
N P Tavakoli, and K M Derbyshire
June 1988, Journal of molecular biology,
N P Tavakoli, and K M Derbyshire
January 1985, Nature,
N P Tavakoli, and K M Derbyshire
December 1987, Proceedings of the National Academy of Sciences of the United States of America,
N P Tavakoli, and K M Derbyshire
August 1997, Journal of molecular biology,
N P Tavakoli, and K M Derbyshire
March 1991, Journal of molecular biology,
Copied contents to your clipboard!