Synaptic excitation in the dorsal nucleus of the lateral lemniscus. 1999

S H Wu
Laboratory of Sensory Neuroscience, Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada. shwu@ccs.carleton.ca

The dorsal nucleus of the lateral lemniscus (DNLL) is a distinct auditory neuronal group located ventral to the inferior colliculus (IC). It receives excitatory and inhibitory afferent inputs from various structures of the auditory lower brainstem and sends GABAergic inhibitory efferents mainly to the contralateral DNLL and the bilateral IC. The synaptic excitation in DNLL neurons consists of two components, an early fast depolarization and a later long lasting one. Glutamate is the probable excitatory neurotransmitter for DNLL neurons. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate the early part of the excitation while N-Methyl-D-aspartate (NMDA) receptors mediate the long lasting component. The long lasting NMDA receptor-mediated component in the DNLL may contribute to a prolonged inhibition in the IC. The DNLL is thought to be a structure for processing binaural information. Most DNLL neurons in rat and bat are sensitive to interaural intensity differences (IIDs). They are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear, showing an excitatory/inhibitory (EI) binaural response pattern. The EI pattern can be attributed to synaptic inputs that originate from various structures in the lower auditory brainstem and impinge on the DNLL neurons. In cat some DNLL neurons are sensitive to IIDs and some are sensitive to interaural time differences. In addition, DNLL neurons exhibit different temporal response patterns to contralateral tonal stimulation and respond to amplitude modulated tones, implying that DNLL may contribute to processing temporally complex acoustic information. DNLL neurons shape binaural responses in the contralateral inferior colliculus and auditory cortex through their inhibitory brainstem projections and contribute to the accuracy with which animals localize sounds in space.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

S H Wu
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Wu
March 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Wu
April 2019, The European journal of neuroscience,
Copied contents to your clipboard!