[Induction of noradrenergic supersensitivity following cordotomy in neonatal rat spinal motoneurons]. 1999

H Kadotani
Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.

Patients with spinal cord lesions frequently show autonomic hyperreflexia. The mechanism of autonomic hyperreflexia has been thought to be an acute general autonomic overactivity in response to cutaneous or visceral stimuli, but it remains uncertain. Several kinds of experiments suggest that amplified spinal sympathetic reflexes in the decentralized cord are attributable to the denervation supersensitivity of denervated neurons, which is a well-known phenomenon in denervated muscle fibers. In the present study, changes in the supersensitivity of motoneurons after cordotomy were studied in the spinal cord of neonatal rats. Responses to bath-applied noradrenaline (NA) were recorded from a ventral root of the isolated spinal cord of 6-day-old rats. In normal spinal cords, NA induced depolarization in motoneurons dose-dependently. alpha 1-antagonist prazosin (3 microM) inhibited the deporalization induced by NA, and alpha 2-antagonist rauwolscine (1 microM) potentiated it. In one group of rats, cordotomy was performed 4 days after birth by complete transection of the spinal cord at vertebrate 8th-10th thoracic level, and NA response was examined two days later (when they were 6 days old). In cordotomized rats, NA-induced depolarization was increased with respect to both amplitude and duration. alpha 1- as well as alpha 2-antagonists inhibited the NA response in the spinalized rats. Especially, both antagonists shortened the duration of NA response as compared to normal level. It is concluded that the denervation supersensitivity to NA appears 2 days after cordotomy in the spinal motoneurons of neonatal rats and that the supersensitivity to NA is attributable to the upregulation of both alpha 1- and alpha 2-adrenoceptors on the motoneurons, indicating that a new type of alpha 2-adrenoceptor function appears.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D012021 Reflex, Abnormal An abnormal response to a stimulus applied to the sensory components of the nervous system. This may take the form of increased, decreased, or absent reflexes. Hyperreflexia,Hyporeflexia,Abnormal Deep Tendon Reflex,Abnormal Reflex,Abnormal Reflexes,Bulbocavernosus Reflex, Decreased,Bulbocavernousus Reflex Absent,Hoffman's Reflex,Palmo-Mental Reflex,Reflex, Absent,Reflex, Acoustic, Abnormal,Reflex, Anal, Absent,Reflex, Anal, Decreased,Reflex, Ankle, Abnormal,Reflex, Ankle, Absent,Reflex, Ankle, Decreased,Reflex, Biceps, Abnormal,Reflex, Biceps, Absent,Reflex, Biceps, Decreased,Reflex, Corneal, Absent,Reflex, Corneal, Decreased,Reflex, Decreased,Reflex, Deep Tendon, Abnormal,Reflex, Deep Tendon, Absent,Reflex, Gag, Absent,Reflex, Gag, Decreased,Reflex, Knee, Abnormal,Reflex, Knee, Decreased,Reflex, Moro, Asymmetric,Reflex, Pendular,Reflex, Triceps, Abnormal,Reflex, Triceps, Absent,Reflex, Triceps, Decreased,Reflexes, Abnormal,Absent Reflex,Decreased Bulbocavernosus Reflex,Decreased Reflex,Palmo Mental Reflex,Pendular Reflex,Reflex Absent, Bulbocavernousus,Reflex, Decreased Bulbocavernosus,Reflex, Hoffman's,Reflex, Palmo-Mental
D002818 Cordotomy Any operation on the spinal cord. (Stedman, 26th ed) Chordotomy,Chordotomies,Cordotomies
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

Copied contents to your clipboard!