Antisense strategies for glycosylation engineering of Chinese hamster ovary (CHO) cells. 1998

E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.

Novel glycoproteins, inaccessible by other techniques, can be obtained by metabolic engineering of the oligosaccharide biosynthesis pathway. Furthermore, alteration of cell-surface oligosaccharides can change the properties of receptors involved in cell-cell adhesion. Sialyl Lewis X (sLex) is a cell-surface oligosaccharide determinant which is specifically expressed on granulocytes and monocytes and which interacts with selectins to influence leukocyte trafficking, thrombosis, inflammation, and cancer. Antisense technology targeting fucosyltransferase VI (Fuc-TVI), an enzyme necessary for the synthesis of the sLex in engineered Chinese hamster ovary (CHO) cells, has reduced Fuc-TVI activity, sLex synthesis, and adhesion to endothelial cells. Antisense methodology to reduce targeted activity in oligosaccharide biosynthesis or other pathways is an important addition to CHO cell metabolic engineering capabilities.

UI MeSH Term Description Entries
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005647 Fucosyltransferases Enzymes catalyzing the transfer of fucose from a nucleoside diphosphate fucose to an acceptor molecule which is frequently another carbohydrate, a glycoprotein, or a glycolipid molecule. Elevated activity of some fucosyltransferases in human serum may serve as an indicator of malignancy. The class includes EC 2.4.1.65; EC 2.4.1.68; EC 2.4.1.69; EC 2.4.1.89. Fucosyltransferase
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014471 Umbilical Veins Venous vessels in the umbilical cord. They carry oxygenated, nutrient-rich blood from the mother to the FETUS via the PLACENTA. In humans, there is normally one umbilical vein. Umbilical Vein,Vein, Umbilical,Veins, Umbilical
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016256 Lewis X Antigen A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, Lewis X antigen is a stage-specific embryonic antigen. Antigens, CD15,CD15 Antigens,Le(X) Antigen,Leu-M1 Antigens,Lewis X Related Antigens,SSEA-1,SSEA-1 Determinant,Stage-Specific Embryonic Antigen-1,3 alpha-Fucosyl-N-Acetyl Lactosamine,CD15 Antigen,Galbeta(1-4)Fucalpha(1-3)GlcNAc,Hapten X,Lewis X Hapten,SSEA 1,3 alpha Fucosyl N Acetyl Lactosamine,Antigen, Lewis X,Embryonic Antigen-1, Stage-Specific,Leu M1 Antigens,SSEA 1 Determinant,Stage Specific Embryonic Antigen 1,X Antigen, Lewis,X Hapten, Lewis
D016373 DNA, Antisense DNA that is complementary to the sense strand. (The sense strand has the same sequence as the mRNA transcript. The antisense strand is the template for mRNA synthesis.) Synthetic antisense DNAs are used to hybridize to complementary sequences in target RNAs or DNAs to effect the functioning of specific genes for investigative or therapeutic purposes. Antisense DNA,Anti-Sense DNA,Anti Sense DNA,DNA, Anti-Sense

Related Publications

E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
April 2010, Current pharmaceutical biotechnology,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
November 2019, ACS synthetic biology,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
November 1984, Biochemical and biophysical research communications,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
January 2023, Frontiers in bioengineering and biotechnology,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
April 2020, Data in brief,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
May 2000, Biotechnology and bioengineering,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
September 2002, Biotechnology and bioengineering,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
May 2018, Metabolic engineering,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
January 1978, Mutation research,
E G Prati, and P Scheidegger, and A R Sburlati, and J E Bailey
May 2008, Biochemical and biophysical research communications,
Copied contents to your clipboard!