Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation. 1976

S Spydevold, and E J Davis, and J Bremer

The effects of various substrates on the concentrations of free amino acids, citric acid cycle intermediates and acylcarnitines were studies in perfused hindquarter of rat in presence of glucose and insulin in order to assess regulatory mechanisms of the level of citric acid cycle intermediates in skeletal muscle. 1. Acetate and acetoacetate effected a significant increase in the level of citrate cycle intermediates and accumulation of acetylcarnitine. These changes were accompanied by a reduction in the level of alanine. The concentration of AMP was significantly elevated. 2. Muscle mitochondria fixed 14CO2 in the presence of pyruvate. The products were identified as malate or citrate when whole and disintegrated mitochondria were used respectively. The fixation was greatly stimulated by acetylcarnitine. 3. Acetylcarnitine inhibited the production of pyruvate from malate by muscle mitochondria. 4. Perfusion with 2-oxoisocaproate and 2-oxoisovalerate promoted increases in the level of citric cycle intermediates, a drop in both alanine and glutamate, and accumulation of branched-chain acylcarnitines. 2-Oxoisocaproate also caused a reduction of alanine released from the muscle. 5. Perfusion with leucine and valine did not change the concentration of citric acid cycle intermediates, but elevated glutamate and still more the concentration of alanine. 6. It is concluded that citric cycle intermediate level in the perfused resting muscle is modified by a) conditions which change the concentration of acetyl-CoA and thereby modify the rate of pyruvate carboxylation and decarboxylation of malate via malic enzyme b) conditions which change the concentration of pyruvate cause changes in alanine and cycle intermediates in the same direction via transamination reactions c) conditions which change the concentrations of 2-oxoacids which are converted to cycle intermediates via oxidation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles

Related Publications

S Spydevold, and E J Davis, and J Bremer
January 1981, Current topics in cellular regulation,
S Spydevold, and E J Davis, and J Bremer
March 2004, American journal of physiology. Cell physiology,
S Spydevold, and E J Davis, and J Bremer
August 1968, Journal of chromatography,
S Spydevold, and E J Davis, and J Bremer
August 1979, Biochemical Society transactions,
S Spydevold, and E J Davis, and J Bremer
October 2014, Circulation. Cardiovascular genetics,
S Spydevold, and E J Davis, and J Bremer
January 1979, The Journal of biological chemistry,
S Spydevold, and E J Davis, and J Bremer
March 1981, The Biochemical journal,
S Spydevold, and E J Davis, and J Bremer
January 2005, The Journal of physiology,
S Spydevold, and E J Davis, and J Bremer
March 1991, The American journal of physiology,
S Spydevold, and E J Davis, and J Bremer
April 2014, Cell biochemistry and biophysics,
Copied contents to your clipboard!