Studies on the influence of fatty acids on pyruvate dehydrogenase interconversion in rat-liver mitochondria. 1976

E I Walajtys-Rode

1. The effect of fatty acids on the interconversion of pyruvate dehydrogenase between its active (nonphosphorylated) and inactive (phosphorylated) forms was measured in rat liver mitochondria respiring in state 3 with pyruvate plus malate and 2-oxoglutarate plus malate and during state 4 to state 3 transition in the presence of different substrates. The content of intramitochondrial adenine nucleotides was determined in the parallel experiments. 2. Decrease of the intramitochondrial ATP/ADP ratio with propionate and its increase with palmitoyl-L-carnitine in state 3 is accompanied by a shift of the steady-state of the pyruvate dehydrogenase system towards the active or the inactive form, respectively. 3. Transition from the high energy state (state4) to the active respiration (state3) in mitochondria oxidizing 2-oxoglutarate or plamitoyl-L-carnitine causes an increase of the amount of the active form of pyruvate dehydrogenase due to the decrease of ATP/ADP ratio in the matrix. 4. No change in ATP/ADP ratio can be observed in the presence of octanoate in mitochondria oxidizing pyruvate or 2-oxoglutarate in state 3 or during state 4 to state 3 transition. Simultanelusly, no significant change in phosphorylation state of pyruvate dehydrogenase occurs and a low amount of the enzyme in the active form is present with octanoate or octanoate plus 2-oxoglutarate. Pyruvate abolishes this effect of octanoate and shifts the steady-state of pyruvate dehydrogenase system towards the active form. 5. These results indicate that fatty acids influence the interconversion of pyruvate dehydrogenase mainly by changing intramitochondrial ATP/ADP ratio. However, the comparison of the steady-state level of the pyruvate dehydrogenase system in the presence of different substrates in various metabolic conditions provides some evidence that accumulation of acetyl-CoA and high level of NADH may promote the phosphorylation of pyruvate dehydrogenase. 6. Pyruvate exerts its protective effect against phosphorylation of pyruvate dehydrogenase in the presence of fatty acids of short, medium or long chain in a manner which depends on its concentration. It is suggested that in isolated mitochondria pyruvate counteracts the effect of acetyl-CoA and NADH on pyruvate dehydrogenase kinase.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002210 Caprylates Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure. Caprylate,Octanoates,Caprylic Acids,Octanoic Acids,Acids, Caprylic,Acids, Octanoic
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

E I Walajtys-Rode
October 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
E I Walajtys-Rode
February 1973, European journal of biochemistry,
E I Walajtys-Rode
March 1976, The Journal of biological chemistry,
E I Walajtys-Rode
September 1975, Biochemical and biophysical research communications,
E I Walajtys-Rode
January 1976, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
E I Walajtys-Rode
December 1972, European journal of biochemistry,
Copied contents to your clipboard!