ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. 1999

S Seino
Department of Molecular Medicine, Chiba University Graduate School of Medicine, Japan. seino@molmed.m.chiba-u.ac.jp

ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. By cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the receptors for sulfonylureas (SUR1 and SUR2), researchers have clarified the molecular structure of KATP channels. KATP channels comprise two subunits: a Kir6.0 subfamily subunit, which is a member of the inwardly rectifying K+ channel family; and a SUR subunit, which is a member of the ATP-binding cassette (ABC) protein superfamily. KATP channels are the first example of a heteromultimeric complex assembled with a K+ channel and a receptor that are structurally unrelated to each other. Since 1995, molecular biological and molecular genetic studies of KATP channels have provided insights into the structure-function relationships, molecular regulation, and pathophysiological roles of KATP channels.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D024661 Potassium Channels, Inwardly Rectifying Potassium channels where the flow of K+ ions into the cell is greater than the outward flow. Inward Rectifier Potassium Channels,IRK1 Channel,Inward Rectifier K+ Channel,Inward Rectifier K+ Channels,Inward Rectifier Potassium Channel,Inwardly Rectifying Potassium Channel,Inwardly Rectifying Potassium Channels,K+ Channels, Inwardly Rectifying,Potassium Channel, Inwardly Rectifying,Channel, IRK1
D064233 Sulfonylurea Receptors ATP-BINDING CASSETTE PROTEINS that are highly conserved and widely expressed in nature. They form an integral part of the ATP-sensitive potassium channel complex which has two intracellular nucleotide folds that bind to sulfonylureas and their analogs. Sulfonylurea Receptor,Receptor, Sulfonylurea,Receptors, Sulfonylurea

Related Publications

S Seino
October 1997, Nihon rinsho. Japanese journal of clinical medicine,
S Seino
January 2005, Current pharmaceutical design,
S Seino
January 1999, Methods in enzymology,
S Seino
November 1992, Cardiovascular research,
S Seino
January 1997, The Journal of biological chemistry,
S Seino
January 1994, Journal of cardiovascular pharmacology,
S Seino
June 1994, Cardiovascular research,
Copied contents to your clipboard!